STATA REPORTING
REFERENCE MANUAL

RELEASE 16

ANV
oy

A Stata Press Publication
StataCorp LLC
College Station, Texas

E\?’\ ® Copyright (¢) 1985-2019 StataCorp LLC
:’J"’"\(N[Al rights reserved
A Version 16

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-294-X
ISBN-13: 978-1-59718-294-2

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATQ and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2019. Stata: Release 16. Statistical Software. College Station, TX: StataCorp LLC.

Contents

Intro ..o Introduction to reporting manual
docx2pdf Convert a Word (.docx) document to a PDF file
Dynamic documents intro Introduction to dynamic documents
Dynamic tagsoiniiii e Dynamic tags for text files
dyndoc Convert dynamic Markdown document to HTML or Word (.docx) document
AYNeXt ..ot Process Stata dynamic tags in text file
html2docx, Convert an HTML file to a Word (.docx) document
markdown Convert Markdown document to HTML file or Word (.docx) document
putdocx intro Introduction to generating Office Open XML (.docx) files
putdocx begin i Create an Office Open XML (.docx) file
putdocx pagebreak Add breaks to an Office Open XML (.docx) file
putdocx paragraph Add text or images to an Office Open XML (.docx) file
putdocx table Add tables to an Office Open XML (.docx) file
Appendix for putdocx Appendix for putdocx entries
putexcel e Export results to an Excel file
putexcel advanced Export results to an Excel file using advanced syntax
putpdf intro Introduction to generating PDF files
putpdf begin Create a PDF file
putpdf pagebreak Add breaks to a PDF file
putpdf paragraph Add text or images to a PDF file
putpdf table Add tables to a PDF file
Appendix for putpdf Appendix for putpdf entries
GlOSSATY . o et ettt e e e e e e e e e

Subject and author INAEXttt

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual
[cM] Stata Choice Models Reference Manual
[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual
[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual
[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual
[m1] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual
[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[Sp] Stata Spatial Autoregressive Models Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TS] Stata Time-Series Reference Manual

[TE] Stata Treatment-Effects Reference Manual:
Potential Outcomes/Counterfactual Outcomes

[1] Stata Glossary and Index

M] Mata Reterence Manual

Title

Intro — Introduction to reporting manual

Description

Description Remarks and examples

This manual documents Stata’s features for reporting. With the commands described here, you can
create reproducible reports in Word, Excel, PDF, and HTML formats. These reports can be customized
to include formatted text, tables of Stata results, and graphs.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Exporting to a Word (.docx) file
Exporting to a PDF file
Exporting to an Excel file
Creating dynamic documents

Converting file types

Introduction

Stata’s commands for exporting estimation results, summary statistics, and graphs deliver neatly
formatted reports in Word, Excel, PDF, and HTML files.

There are two varieties of commands for creating reports. The first variety creates Word documents,
Excel files, and PDF documents that incorporate stored results from Stata commands in formatted
text and tables. The putdocx, putpdf, and putexcel suites of commands create documents in this
manner. The second variety creates HTML and Word documents that include the full output from Stata
commands and allows you to format the text using Markdown. The dyndoc and dyntext commands,
which are discussed in Creating dynamic documents, incorporate Stata output in this manner.

Below, we briefly describe each of the report-generating commands. We also review the commands
that allow you to convert files from one type to another.

Exporting to a Word (.docx) file

The putdocx suite of commands creates Word (.docx) documents with embedded Stata results.
With single-line commands, you can export a whole estimation table, an image, or a matrix to a
document. You can also build complex tables with custom layouts. The suite allows you to create a
document complete with formatted text and Stata results without leaving Stata.

[RPT] putdocx intro
[RPT] putdocx begin
[RPT] putdocx pagebreak
[RPT] putdocx paragraph
[RPT] putdocx table

Introduction to generating Office Open XML (.docx) files
Create an Office Open XML (.docx) file

Add breaks to an Office Open XML (.docx) file

Add text or images to an Office Open XML (.docx) file
Add tables to an Office Open XML (.docx) file

1

2 Intro — Introduction to reporting manual

We recommend that you read [RPT] putdocx intro first for an overview of the putdocx commands
and how you use them. Then you will want to review [RPT]| putdocx begin to learn how to create
a .docx file in memory. Once you have created a .docx file with putdocx begin, you can refer
to [RPT] putdocx paragraph for exporting text and images to your file and refer to [RPT]| putdocx
table for exporting tables of results to your file.

The putdocx suite allows you to interact Stata’s capabilities with Word’s additional formatting
features. You can create a .docx file complete with Stata results from within Stata, but you might
also append fragments created in both Stata and Word. See Workflow options for report building
in [RPT] putdocx intro for different ways to create Word documents and how to determine which
method is most appropriate for the report you want to create.

Word documents can also be created using the dynamic documents commands described below in
Creating dynamic documents.

Exporting to a PDF file

The putpdf suite of commands creates PDF files with Stata results. With these commands, you
can incorporate formatted text, summary statistics, regression results, images, customized tables, and
matrices in your document.

[RPT] putpdf intro Introduction to generating PDF files
[RPT] putpdf begin Create a PDF file

[RPT] putpdf pagebreak Add breaks to a PDF file

[RPT] putpdf paragraph Add text or images to a PDF file
[RPT] putpdf table Add tables to a PDF file

We recommend that you read [RPT]| putpdf intro first for an overview of the putpdf commands
and how you use them. In [RPT] putpdf begin, we demonstrate how to create a file in memory. Once
you have done so, you can refer to [RPT] putpdf paragraph and [RPT] putpdf table for details on
embedding text, images, and tables in a PDF file.

Exporting to an Excel file

With putexcel, you can export Stata results to an Excel workbook, including estimation results,
matrices, and images. You can write Stata expressions as well as Excel formulas to a workbook and
save portions of your work to separate sheets.

[RPT] putexcel Export results to an Excel file
[RPT] putexcel advanced Export results to an Excel file using advanced syntax

We recommend that you read [RPT] putexcel first to learn the basics of exporting Stata results
to Excel. In [RPT] putexcel advanced, we provide advanced syntax for exporting multiple types of
results simultaneously and for formatting existing contents of cells.

Intro — Introduction to reporting manual 3

Creating dynamic documents

Stata’s dynamic document commands allow you to embed Stata output in text files and to create
HTML files and Word documents from Markdown text and Stata output. Dynamic tags are used to
process Stata commands in a text file; they run the code and export the output to the destination file.
To create text files with Stata output, you simply enclose Stata commands within these dynamic tags
throughout your source file and then use dyntext to create the output file. To create HTML files and
Word documents, you can combine Stata dynamic tags and Markdown text in a file and then use
dyndoc to convert it to an HTML file or Word document. dyndoc calls on markdown to process the
Markdown text.

[RPT] Dynamic documents intro Introduction to dynamic documents

[RPT] Dynamic tags Dynamic tags for text files

[RPT] dyndoc Convert dynamic Markdown document to HTML or Word (.docx)
document

[RPT] dyntext Process Stata dynamic tags in text file

[RPT] markdown Convert Markdown document to HTML file or Word (.docx)
document

We recommend reading [RPT] Dynamic documents intro first because it demonstrates the process
of using dynamic tags in your text file, converting it to an output text file, and converting it to an
output HTML file or Word document. After reading that entry, you can review [RPT| Dynamic tags
for the list of tags that are available for including Stata output in your file. You will find the relevant
tags for running Stata commands, including graphs in your file, and displaying Stata expressions.

Converting file types

Stata also has commands for converting files from HTML to Word and from Word to PDF. These
commands may be used whether the original files were created using one of the Stata commands
listed above or otherwise.

[RPT] html2docx Convert an HTML file to a Word (.docx) document
[RPT] docx2pdf Convert a Word (.docx) document to a PDF file

Title

docx2pdf — Convert a Word (.docx) document to a PDF file

Description Quick start Syntax Options
Remarks and examples Also see

Description

docx2pdf converts a Word (.docx) document to a PDF file.

Quick start

Convert Word document myfile.docx to a PDF saved as myfile.pdf
docx2pdf myfile

As above, but save the PDF as mypdf .pdf
docx2pdf myfile, saving(mypdf)

As above, and overwrite the existing mypdf . pdf
docx2pdf myfile, saving(mypdf) replace

Syntax

docx2pdf srcfile [, options]

srcfile is a . docx file. If srcfile is specified without an extension, .docx is assumed. If srcfile contains
embedded spaces or other special characters, enclose it in double quotes.

options Description

saving (targetfile) specify the target PDF file to be saved

replace replace the target PDF file if it already exists

nomsg suppress message with link to rargetfile
Options

saving (targetfile) specifies the target PDF file to be saved. If targetfile is specified without an
extension, .pdf is assumed. If targetfile contains embedded spaces or other special characters,
enclose it in double quotes. If saving() is not specified, the target filename is constructed using
the source filename (srcfile) with the .pdf extension.

replace specifies that the target PDF file be replaced if it already exists.

nomsg suppresses the message that contains a link to the target file.

docx2pdf — Convert a Word (.docx) document to a PDF file 5

Remarks and examples

docx2pdf converts Word (.docx) documents to PDF files. This command is most useful when
you want to convert an HTML file to a PDF file; in this case, you would first use html2docx to
convert the HTML file to a Word document and then use docx2pdf to convert it to a PDF file. If you
would like to convert a dynamic Markdown document to a PDF file, you can use dyndoc to create a
Word document and then use docx2pdf to convert that Word document to a PDF file.

If you are wanting to embed Stata results and graphs in a PDF file, you can also use the putpdf
suite; see [RPT] putpdf intro.

> Example 1: Convert Word document to a PDF file

We have a Word document, graphs.docx, which you can download to your current working
directory by typing

. copy http://www.stata-press.com/data/ri6/reporting/graphs.docx .

To convert this file to a PDF file, we type
. docx2pdf graphs.docx

6 docx2pdf — Convert a Word (.docx) document to a PDF file

Because we did not specify a filename for our target file, the source filename was used with the .pdf
extension. Thus, the file graphs.pdf was saved. Here is a portion of this file:

graphs.pdf - Adobe Acrobat Pro DC - O X
[E Edit View Window Help

Home Tools graphs.pdf

S B HERQ® @ 2

T T
3000 4000
Weight (Ibs.)

95% Cl Fitted values
L] Mileage (mpg)

We could have also created separate graphs for domestic and foreign cars with the by() option.
See graph twoway Ifitei in the Stata Graphics Reference Manual for details.

Diagnostic plot

There are multiple diagnostic plots available for use after regress. Here, we use rviplot to
graphically check for a relationship between the residuals and fitted values from our model. We
regress mpg on weight and then issue rviplot.

regress mpg weight
rvfplot, yline(0) title(Residuals versus fitted values)

The commands above produce the following graph:

You can see the whole file at http://www.stata-press.com/data/r16/reporting/graphs.pdf.

Also see
[RPT] html2docx — Convert an HTML file to a Word (.docx) document
[RPT] putpdf intro — Introduction to generating PDF files

http://www.stata-press.com/data/r16/reporting/graphs.pdf

Title

Dynamic documents intro — Introduction to dynamic documents

Description Remarks and examples Also see

Description

Stata’s dynamic document commands create text files, Word (.docx) documents, and HTML files
that include Stata results. With these commands, you can create documents that combine text with
summary statistics, regression results, graphs, and other Stata results. You can include the full output
of Stata commands or incorporate individual values from the results of commands. Word documents
and HTML files can easily be customized using the Markdown text-formatting language.

See the following manual entries for details on dynamic documents:

[RPT] Dynamic tags Dynamic tags for text files

[RPT] dyndoc Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] dyntext Process Stata dynamic tags in text file
[RPT] markdown Convert Markdown document to HTML file or Word (.docx) document

These documents are dynamic because, as your data change, you simply rerun the dyndoc or
dyntext command that creates your dynamic document, and the HTML file, Word document, or text
file is updated with the new results.

Remarks and examples

Creating files with Stata output is straightforward with dyntext and dyndoc. The former processes
Stata commands within a plain text file to create a text file that includes Stata output. The latter
converts a text file with Markdown text and Stata commands into a formatted HTML file or Word
document file with Stata output. The Stata commands are processed according to the dynamic tags that
indicate how commands, output, results of expressions, and graphs should be inserted in a document.
Markdown, a simple markup language with a formatting syntax based on plain text, is processed by
dyndoc. This allows you to include headings, subheadings, bold and italic font, text boxes, bulleted
lists, and more in the HTML files and Word documents generated by this command.

Below, we briefly overview and demonstrate the dynamic document creation commands. See the
individual entries for the syntax and additional examples.

> Example 1: Using dynamic tags

Whether you want to create a text file, Word document, or an HTML file, you will use dynamic
tags in your source file to embed Stata output in your destination file. Different tags are available
to include Stata output, expressions, and graphs in the destination file. With dynamic tags, you can
control whether the Stata command, the output, or both are included in the final document. For
example, in the following text file we load auto.dta and then summarize mpg:

8 Dynamic documents intro — Introduction to dynamic documents

begin example.txt ————

Using Stata dynamic tags

I am going to examine fuel efficiency using -auto.dta-. First, I load the dataset:

<<dd_do>>
sysuse auto, clear
<</dd_do>>

Now I -summarize mpg-, but I only display the output, not the command:

<<dd_do: nocommands>>
summarize mpg
<</dd_do>>

end example.txt ————
You can type

. copy http://www.stata-press.com/data/ri6/reporting/example.txt .

to copy example.txt to your current working directory.

We use the <<dd_do>> dynamic tag to run the sysuse command. However, when summarizing
mpg, we specify the nocommands attribute to suppress the command in the output file. Attributes,
which can be thought of as options, modify the tag’s behavior. See [RPT] Dynamic tags for a full
list of dynamic tags.

4

> Example 2: Create a text file with Stata output

Having enclosed the Stata commands within the dynamic tags in our text file, we can use dyntext
to embed the output from those commands in a text file:

. dyntext example.txt, saving(outputl.txt)

This command produces the following:

| outputl.ixt - Notepad - m} >

Eile Edit Format Wiew Help
Using Stata dynamic tags [

I am going to examine fuel efficiency using -auto.dta-. First, I load the dataset:
. sysuse auto, clear
(1978 Automobile Data)

Mow I -summarize- -mpg-, but I only display the output, not the command:

Variable | Obs Mean Std. Dev. Min Max

mpg | 74 21.2973 5.785583 12 a1

This outputl.txt file is available at http://www.stata-press.com/data/r16/reporting/.

http://www.stata-press.com/data/r16/reporting/

Dynamic documents intro — Introduction to dynamic documents 9

For a more detailed example of including Stata output in text files, see [RPT] dyntext.

> Example 3: Create an HTML file with Stata output

Suppose that now we want to convert example.txt to an HTML file. We could use dyndoc instead
of dyntext, but the output would not be formatted nicely; you can try it for yourself to see the
difference. In fact, the beauty of dyndoc is that it can process Markdown-formatted text and embed
Stata output in the destination file. Let’s see dyndoc in its full potential by adding Markdown text
to our previous file. We still need to use dynamic tags to process the Stata code, but rather than
using “-” to indicate Stata command names, variable names, etc., we will use two asterisks around
each command and variable name. We also enclose Stata commands and tags in sets of four tildes
to display the content in plain text. Our modified text file is shown here:

begin example2.txt

Using Stata dynamic tags

I am going to examine fuel efficiency using **auto.dta*x. First, I load the
dataset:

<<dd_do>>

sysuse auto, clear

<</dd_do>>

Now I **summarize mpg#**, but I only display the output, not the command:
<<dd_do: nocommands>>

summarize mpg

<</dd_do>>

end example2.txt
We copy this file to our current working directory and then convert it to an HTML file with dyndoc:

. copy http://www.stata-press.com/data/ri6/reporting/example2.txt .
. dyndoc example2.txt

10 Dynamic documents intro — Introduction to dynamic documents

This produces the following:

[example2html X +
(& @ https://www.stata-press.com/data/r16/reporting/example2.hitml I s

= Apps Stata Other bookmarks

Using Stata dynamic tags

I am going to examine fuel efficiency using auto.dta. First, I load the dataset:

. sysuse auto, clear
(1278 Automobile Data)

Now I summarize mpg. but I only display the output, not the command:

Variable | Obs Mean Std. Dev. Min Max

mpg | 74 21.2973 5.785583 12 41

We could have also included a graph or Stata expression in the HTML file; see [RPT] dyndoc for
a more detailed example.
d

> Example 4: Create a Word document with Stata output

By default, dyndoc will create an HTML output file, but we could just as easily convert example.txt
to a Word (.docx) document instead by specifying the docx option:

. dyndoc example2.txt, docx

Dynamic documents intro — Introduction to dynamic documents 11

This produces example2.docx, which looks like this:

example2.dock [Compatibility Mode] - Word

File Home Insert Design Llayout References Mailings Review View Help Acobat Q Tellmewhat youwanttodo

Using Stata dynamic tags

I am going to examine fuel efficiency using aute.dta. First, I load the dataset:

- sysuse auto, clear
(1978 Automobile Data)

Now I summarize mpg, but I only display the output, not the command:

Variable | Pbs Mean Sstd. Dev. Min Max
7 mpg | T4 21.28973 5.785503 12 41
Pagelof1 Séwords [[¥ English (United States) [B - 1 + 120%

Once you have created a Word document, you can also convert it to a PDF file; see [RPT] docx2pdf.
d

The output files, example2.html and example2.docx, are available at http://www.stata-press.
com/data/r16/reporting/.

Above, we used dyndoc to embed the output from commands and to process Markdown-formatted
text when we created an HTML file and a Word document. dyndoc uses the markdown command to
convert the Markdown-formatted text to the HTML format. markdown can also be used independently
to create HTML files and Word documents when the source file does not contain Stata dynamic tags.

Also see
[RPT] Dynamic tags — Dynamic tags for text files
[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] dyntext — Process Stata dynamic tags in text file
[RPT] markdown — Convert Markdown document to HTML file or Word (.docx) document

http://www.stata-press.com/data/r16/reporting/
http://www.stata-press.com/data/r16/reporting/

Title

Dynamic tags — Dynamic tags for text files

Description Remarks Also see

Description

Dynamic tags are instructions used by Stata’s dynamic documents commands, dyndoc and dyntext,
to perform a certain action, such as run a block of Stata code, insert the result of a Stata expression
in text, export a Stata graph to an image file, or include a link to the image file.

Remarks

Remarks are presented under the following headings:

Descriptions of dynamic tags

Version control

Execute and include output from a block of Stata code

Include strings and values of scalar expressions in text

Include values of scalar expressions and formatted text in a .docx file
Export and include a Stata graph

Include a text file

Disable dynamic text processing

Skip contents based on condition

Remove contents

Descriptions of dynamic tags

Here is a list of available dynamic tags and a short description for each. The tag may be abbreviated;
the minimum abbreviation is indicated by the underlined letters.

12

Dynamic tags — Dynamic tags for text files 13

Dynamic tag

Description

<<dd_version>>
<<dd_do>>
<</dd_do>>
<<dd_display>>

<<dd_docx_display>>

<<dd_graph>>
<<dd_ignore>>
<</dd_ignore>>
<<dd_include>>
<<dd_remove>>
<</dd_remove>>
<<dd_skip_if>>
<<dd_skip_else>>

<<dd_skip_end>>

specify the minimum version required to convert the dynamic document
execute a block of Stata code and optionally include its output
end <<dd_do>>

include output of Stata expression as shown by Stata’s display
command

include output of Stata expression in a .docx file as shown by
Stata’s display command and format text within a block

export a Stata graph and include a link to the file

disable processing of dynamic tags except <<dd_remove>>
end <<dd_ignore>>

include the contents of a text file

remove the following text until <</dd_remove>> is specified
end <<dd_remove>>

skip text based on condition

skip text based on condition

end <<dd_skip_if>> block

<<dd_docx_display>> is only for use with putdocx textblock commands in a do-file.

Some tags must start at the beginning of a line, and the text in the same line after the tag is simply
ignored. Other tags can be written in the middle of a line. The following table lists the required
position in text for all tags.

Dynamic tag

Description

<<dd_version>>
<<dd_do>>
<</dd_do>>
<<dd_display>>
<<dd_docx_display>>
<<dd_graph>>
<<dd_ignore>>
<</dd_ignore>>
<<dd_include>>
<<dd_remove>>
<</dd_remove>>
<<dd_skip_if>>
<<dd_skip_else>>
<<dd_skip_end>>

beginning of a line, recommended at the start of a file
beginning of a line
beginning of a line
within a line
within a line
within a line
beginning of a line
beginning of a line
beginning of a line
within a line
within a line
beginning of a line
beginning of a line
beginning of a line

Tags can have attributes. Attributes are modifiers of a tag’s behavior. Attributes can be repeated,
and the last one will take effect. For example, if you specify <<dd_do: commands nocommands>>,
the commands will not be displayed because the attribute nocommands supersedes the previously

14 Dynamic tags — Dynamic tags for text files

specified attribute commands. This is useful when you experiment with the behavior of attributes for
the best output. Some attributes have values; for example, graphname () requires the name of the
graph to be exported. If a tag has only one attribute and that attribute requires a value, then the
attribute name is omitted and only the value is required; for example, the dd_version tag is used
as <<dd_version: an integer number>>.

Version control

<<dd_version: version_number>>

The <<dd_version>> tag specifies the minimum version required to convert the source file. The
version number is independent of Stata’s version command. The tag must be at the beginning of a
new line. We recommend that the tag be placed at the beginning of the srcfile.

The current version, and the default, is 2, and it is introduced as of the release of Stata 16. The
current version number is also stored in c(dyndoc_version).

Execute and include output from a block of Stata code

<<dd_do: attribute>>
block of Stata code . . .
<</dd_do>>

The <<dd_do>> tag runs the block of Stata code, replacing the lines between <<dd_do>> and
<</dd_do>> with Stata output. Both the start tag, <<dd_do>>, and the end tag, <</dd_do>>, must
be at the beginning of new lines.

attribute Description

quietly suppress all output
nocommands suppress printing of command
nooutput suppress command output
noprompt suppress the dot prompt

Include strings and values of scalar expressions in text
<<dd_display: display_directive>>

The <<dd_display>> tag executes Stata’s display command and then replaces the tag with its
output. The tag cannot contain a line break or >>. Use >> (with a space in between) instead if you
need to include >> in the display_directive.

The <<dd_display>> tag can be used multiple times inside a line of text. For example, say that
we want to display the circumference of a circle of radius 1 up to the two digits after the decimal.
Instead of computing the number and then copying and pasting the result into the text, we can write

2*%1%<<dd_display:%4.2f c(pi)>> = <<dd_display:%4.2f 2*1xc(pi)>>

which produces

2%1*3.14 = 6.28

Dynamic tags — Dynamic tags for text files 15

Include values of scalar expressions and formatted text in a .docx file

<<dd_docx_display text_options: display_directive>>

This tag includes expressions and formatted text within a block of text in a .docx file. It can only
be used with text enclosed in putdocx textblock commands, as follows:
putdocx textblock begin

. text <<dd_docx_display directive>> text ...
putdocx textblock end

The <<dd_docx_display>> tag executes Stata’s display command and then replaces the tag
with its output. The output is formatted according to the text_options available with putdocx text.
The tag cannot contain a line break or >>. If you need to include >> in the display_directive, use
the symbols with a space in between (> >).

The <<dd_docx_display>> tag can be used multiple times inside a line of text. For example,
say that we want to display the circumference of a circle with radius 1 up to the two digits after the
decimal. Instead of computing the number and then copying and pasting the result into a block of
text, we can write

putdocx textblock begin

2*x1%<<dd_docx_display bold:%4.2f c(pi)>> = <<dd_docx_display bold:%4.2f 2*1xc(pi)>>
putdocx textblock end

which formats the value of 7 and the product in bold and produces the following in the .docx file
being created.
2x1%3.14 = 6.28

For another example demonstrating the use of this dynamic tag, see Working with blocks of text
in [RPT] putdocx paragraph.

16 Dynamic tags — Dynamic tags for text files

Export and include a Stata graph
<<dd_graph: attribute>>

The <<dd_graph>> tag exports a Stata graph and then includes a link to the exported image file
in the target file.

attribute Description

saving (filename) export graph to filename

replace replace the file if it already exists

graphname (name) name of graph to be exported

;g export graph as SVG

png export graph as PNG

pdf export graph as PDF

eps export graph as EPS

ps export graph as PS

html output an HTML link

markdown output a Markdown link; default is html

pathonly output the path of the file; default is html

alt (text) alternative text for the graph to be read by voice software;
ignored if pathonly in effect

height (#) height in pixels of the graph in HTML; ignored if markdown or
pathonly in effect

width (#) width in pixels of the graph in HTML; ignored if markdown or
pathonly in effect

relative use file path relative to the fargetfile path specified in dyndoc or
dyntext; this is the default

absolute use absolute path in the link; default is relative

basepath (path) use path as base directory where graph files will be exported; default
is the current working directory if it is not specified

nourlencode do not encode the path to a percent-encoded URL; ignored if html

or markdown in effect

If graphname (name) is not specified, the topmost graph is used. You can use the default name
“Graph” to export the graph without the name.

For paths specified in the saving() or basepath() attributes, a single backslash (\) is in-
terpreted as an escape character rather than as the directory separator character. When work-
ing on Windows, we recommend using a forward slash (/) as the directory separator character
(for example, C:/mypath/myfile); otherwise, you must use a double backslash (for example,
C:\\mypath\\myfile).

If saving(filename) is not specified, a filename will be constructed based on the graph name.

If none of .svg, .png, or .pdf is specified, the saving(filename) is checked first; if the name
specified in saving(filename) has the extension of .svg, .png, or .pdf, then the graph will be
exported in the format corresponding to the extension. For example, the dynamic tag

<<dd_graph:saving(grl.png) graphname(gri)>>

produces

Dynamic tags — Dynamic tags for text files 17

Otherwise, the type .svg will be used as in
<<dd_graph:saving(grl.pgg) graphname(grl)>>
which produces

If markdown is specified, a Markdown link will be produced. For example, the dynamic tag

<<dd_graph:saving(grl.svg) graphname(gri) markdown>>

produces

'[1(grl.svg)

You may use pathonly if you want an HTML link with more attributes than html or markdown
can provide or if you want to use the path in a different target file type such as IATEX.

By default, the path is outputted as a percent-encoded URL. For example, the dynamic tag
<<dd_graph:saving("gr 1.svg") graphname(grl) pathonly>>
produces
gr’201.svg
You may use nourlencode to disable the encoding process as in

"<<dd_graph:saving("gr 1.svg") graphname(grl) pathonly nourlencode>>"

which produces

"gr 1.svg"

The <<dd_graph>> tag can be used inside a line of text.

Include a text file
<<dd_include: filename>>
The <<dd_include>> tag replaces the tag with the contents of the specified text file. The text

file is included as is. The tag must be at the beginning of a new line. The filename itself may contain
Stata macros, but not the file contents.

Disable dynamic text processing

<<dd_ignore>> and <</dd_ignore>>

The <<dd_ignore>> tag causes dyntext and dyndoc to ignore the dynamic tag processing,
starting from the next line until the line right before a <</dd_ignore>> tag. Both the beginning and
ending tags must be at the beginning of a line. The only tag it does not affect is the <<dd_remove>>
tag.

18 Dynamic tags — Dynamic tags for text files

Skip contents based on condition

<<dd_skip_if: Stata expression>>
lines of text . . .
<<dd_skip_end>>

or

<<dd_skip_if: Stata expression>>
lines of text . . .
<<dd_skip_else>>

lines of text . . .

<<dd_skip_end>>

<<dd_skip_if: Stata expression>> evaluates the Stata expression; if it evaluates to true (anything
but 0), the lines before the next <<dd_skip_end>> are skipped. If there is a <<dd_skip_else>>,
the lines before <<dd_skip_else>> are skipped, and the lines between <<dd_skip_else>> and
<<dd_skip_end>> are processed as usual.

If the Stata expression evaluates to false (0), the lines before the next <<dd_skip_end>> are not
skipped. If there is a <<dd_skip_else>>, the lines before <<dd_skip_else>> are not skipped,
and the lines between <<dd_skip_else>> and <<dd_skip_end>> are skipped.

Remove contents

. <<dd_remove>>text to remove . . .
lines of text to remove . . .
text to remove ... <</dd_remove>> ...

The <<dd_remove>> and <</dd_remove>> tags remove all the contents between the two tags
from the resulting target file. The tags can be used inside a line of text.

<<dd_remove>> is a postprocessing tag, which means it is processed after all other tags.

Also see
[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] dyntext — Process Stata dynamic tags in text file
[RPT] markdown — Convert Markdown document to HTML file or Word (.docx) document

Title

dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

Description Quick start Syntax Options Remarks and examples
References Also see

Description

dyndoc converts a dynamic Markdown document—a document containing both formatted text and
Stata commands—to an HTML file or Word document. Stata processes the Markdown text and Stata
dynamic tags (see [RPT] Dynamic tags) and creates the output file. Markdown is a simple markup
language with a formatting syntax based on plain text. It is easily converted to an output format
such as HTML. Stata dynamic tags allow Stata commands, output, and graphs to be interleaved with
Markdown text.

If you want to convert a Markdown document without Stata dynamic tags to an HTML file or Word
document, see [RPT] markdown. If you want to convert a plain text file containing Stata dynamic
tags to a plain text output file, see [RPT] dyntext. If you want to convert an HTML file to a Word
document, see [RPT| html2docx.

Quick start

Convert text file myfile.txt with Stata dynamic tags and Markdown formatting to an HTML file
with Stata output saved as myfile.html

dyndoc myfile.txt

As above, but save the HTML file as mydoc.html
dyndoc myfile.txt, saving(mydoc.html)

As above, and overwrite the existing mydoc.html
dyndoc myfile.txt, saving(mydoc.html) replace

Convert myfile.txt to a Word document saved as myfile.docx
dyndoc myfile.txt, docx

19

20 dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

Syntax

dyndoc srcfile [arguments] [, options]

srcfile is a plain text file containing Markdown-formatted text and Stata dynamic tags.

arguments are stored in the local macros ‘1, €2, and so on for use in srcfile; see [U] 16.4.1 Argument
passing.

You may enclose srcfile and targetfile in double quotes and must do so if they contain blanks or other
special characters.

options Description

saving (targetfile) specify the target HTML file or Word (.docx) document to be saved

replace replace the target HTML file or Word (.docx) document if it

o already exists

hardwrap replace hard wraps (actual line breaks) with the
 tag in an HTML

file or with line breaks in a Word (.docx) document

nomsg suppress message with a link to rargetfile

nostop do not stop when an error occurs

embedimage embed image files as Base64 binary data in the target HTML file

docx output a Word (.docx) document instead of an HTML file
Options

saving (targetfile) specifies the target file to be saved. If saving() is not specified, the target
filename is constructed using the source filename (srcfile) with the .html extension or with the
.docx extension if docx is specified. If the targetfile has the .docx extension, the docx option
is assumed even if it is not specified.

replace specifies that the target file be replaced if it already exists.

hardwrap specifies that hard wraps (actual line breaks) in the Markdown document be replaced with
the
 tag in the HTML file or with a line break in the Word (.docx) document if the docx
option is specified.

nomsg suppresses the message that contains a link to the target file.

nostop allows the document to continue being processed even if an error occurs. By default, dyndoc
stops processing the document if an error occurs. The error can be caused by either a malformed
dynamic tag or Stata code executed within the tag.

embedimage allows image files to be embedded as data URI (Base64-encoded binary data) in the
HTML file. The supported image file types are portable network graphics (.png), JPEG (. jpg),
tagged image file format (.tif), and graphics interchange format (.gif). This option cannot be
used to embed SVG and PDF image file types.

The image must be specified in a Markdown link; you cannot embed images specified by URLs.
This option is ignored if docx is specified.

docx specifies that the target file be saved in Microsoft Word (.docx) format. If the target file has the
.docx extension, the docx option is implied. The conversion process consists of first producing
an HTML file and then using html2docx to produce the final Word document.

dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document 21

Remarks and examples

A dynamic document contains both static narrative and dynamic tags. Dynamic tags are instructions
for dyndoc to perform a certain action, such as run a block of Stata code, insert the result of a
Stata expression in text, export a Stata graph to an image file, or include a link to the image file.
Any changes in the data or in Stata will change the output as the document is created. The main
advantages of using dynamic documents are

e results in the document come from executing commands instead of being copied from Stata
and pasted into the document;

e no need to maintain parallel do-files; and

e any changes in data or in Stata are reflected in the final document when it is created.

> Example 1: Converting a dynamic document to an HTML file

Let us consider an example. Suppose that we have dyndoc_ex . txt with the following Markdown-
formatted text that includes Stata dynamic tags.

begin dyndoc_ex.txt ————

<<dd_version: 2>>
<<dd_include: header.txt >>

Using Stata dynamic tags in a text file with the dyndoc command

Let us consider an example where we study the **mpg** and **weight** variables
in **auto.dta**. In our examples below, we will first write the commands so
that they will be displayed in our target HTML file. Then, we will write the
commands so that Stata will process the Stata dynamic tags, displaying the
results of the Stata commands in the target HTML file.

We first use the **sysusex* command to load the dataset and then describe
the data using the **describe** command.

<<dd_ignore>>

<<dd_do>>

sysuse auto, clear

describe

<</dd_do>>

<</dd_ignore>>

This produces the following Stata results:

<<dd_do>>

sysuse auto, clear

describe

<</dd_do>>

Now, we want to check if **mpg** is always greater than O and less than 100.
We use the **assert** command to perform the check. In this case, we do not
want to include any output in the target HTML file, so we use the **quietly*x*
attribute to modify the behavior of the **dd_do** Stata dynamic tag.
<<dd_ignore>>

<<dd_do:quietly>>

assert mpg > 0 & mpg < 100

<</dd_do>>

<</dd_ignore>>

<<dd_do:quietly>>
assert mpg > 0 & mpg < 100

22 dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

<</dd_do>>
If the data do not satisfy the conditions, **dyndoc** will fail with an error
message, which will occur if we run the same **assert** command in a do-file.

Next, we want to summarize the **weight** variable:
<<dd_ignore>>

<<dd_do>>

summarize weight

<</dd_do>>

<</dd_ignore>>

This produces the following in the target HTML file:

<<dd_do>>

summarize weight

<</dd_do>>

We want to use the minimum and maximum values of **weight** in a sentence.
Instead of copying and pasting the numbers from the **summarize** output, we can
use the **dd_display#** Stata dynamic tag with the **r(min)**x and **r(max)**
stored results:

<<dd_ignore>>

The variable weight has minimum value <<dd_display: %4.2f ‘r(min)’>> and
has maximum value <<dd_display: %4.2f ‘r(max)’>>.

<</dd_ignore>>

This produces the following in the target HTML file:

> The variable weight has minimum value <<dd_display: %4.2f ‘r(min)’>>

and has maximum value <<dd_display: %4.2f ‘r(max)’>>.

The **dd_display** dynamic tag uses the **display** command to evaluate
expressions. It can be used as a calculator. For example, if we want to
include the $$range = max - min$$ in a sentence, instead of calculating the
number and then copying and pasting it, we can use

<<dd_ignore>>

The variable weight has range <<dd_display: %4.2f ‘r(max)’-‘r(min)’>>.
<</dd_ignore>>

which produces the following in the target HTML file:

> The variable weight has range <<dd_display: %4.2f ‘r(max)’-‘r(min)’>>.
Now, we want to graph **mpg** and **weight** using a scatterplot. We use the
dd_do tag with the **nooutput** attribute to generate the scatterplot
first. The **nooutput** attribute leaves the command in the output only,
<<dd_ignore>>

<<dd_do:nooutput>>

scatter mpg weight, mcolor(blue%50)

<</dd_do>>

<</dd_ignore>>

which generates a scatterplot of **mpg** and **weight** with 507 opacity
color markers.

<<dd_do:nooutput>>

scatter mpg weight, mcolor(blue%50)

<</dd_do>>

dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document 23

Now, we want to export the graph to a file and include an image link to the
file.

<<dd_ignore>>

<<dd_graph: sav("graph.svg") alt("scatter mpg weight") replace height (400)>>
<</dd_ignore>>

This produces a graph of 400 pixels high.

<<dd_graph: sav("graph.svg") alt("scatter mpg weight") replace height(400)>>

end dyndoc_ex.txt

Q Technical note

We use four tildes in a row, ~~~~, in our source file around parts of the document that we want to
appear in plain text, such as Stata commands and output. Without the ~~~~, Stata’s output would be
interpreted as HTML in the final document and would not look as it should. This applies regardless
of whether we are creating an HTML file or a Word document.

a

You will notice that we used the <<dd_include>> dynamic tag to include the header.txt file.
The header. txt file contains HTML code to include at the top of our target HTML file. It refers to the
stmarkdown. css file, which is a stylesheet that defines how the HTML document is to be formatted.
This formatting would also apply if we were creating a Word document. We can copy these files and
dyndoc_ex.txt to our working directory by typing

. copy http://www.stata-press.com/data/r16/reporting/header.txt .

. copy http://www.stata-press.com/data/ri16/reporting/stmarkdown.css .
. copy http://www.stata-press.com/data/r16/reporting/dyndoc_ex.txt .

To generate the target HTML file in Stata, we type

. dyndoc dyndoc_ex.txt

24 dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

The HTML file dyndoc_ex.html is saved. Here is a portion of this file:

= (m] X
[dyndoc_exhtml x +
C @ htips://www.stata-press.com/data/r16/reporting/dyndoc_ex-html h* QU
i Apps Stata Other bookmarks

Using Stata dynamic tags in a text file with the dyndoc
command

Let us consider an example where we study the mpg and weight variables in auto.dta. In our examples below, we will first write the
commands so that they will be displayed in our target HTML file. Then, we will write the commands so that Stata will process the Stata
dynamic tags, displaying the results of the Stata commands in the target HTML file.

‘We first use the sysuse command to load the dataset and then deseribe the data using the deseribe command.
<<dd_do>>
sysuse auto, clear

describe

<</dd_do>>

This produces the following Stata results:

. sysuse auto, clear

(1978 ARutomobile Data)
. describs

Contains data from /usr/local/statalé/ado/base/a/auto.dta

obs: 74 1 Automobile Data

vars: 12 13 Apr 2018 17:45

(_dta has notes)

make strlg $-18 Make and Model

price int 8. Price

mpg int %8. Mileage (mpg)

rep78 int 8. Repair Record 1978
headroom float %6. Headroom (in.)

trunk int %8. Trunk space (cu. ft.)
weight int 8. Weight (1lbs.)

length int 8.

turn int 8. Turn Circle (ft.)
displacement int 28. Displacement (cu. in.)
gear_ratio float %6. Gear Ratio

foreign byte origin Car type

You can see the whole file at https://www.stata-press.com/data/r16/reporting/dyndoc_ex.html.

https://www.stata-press.com/data/r16/reporting/dyndoc_ex.html

dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document 25

Q Technical note

Because quietly and capture suppress the results of the command from being produced, you
should not use these prefix commands with Stata code to be converted by dyndoc.

a
> Example 2: Converting a dynamic document to a Word document

As above, we could easily create a Word document from the dynamic text file used in example 1
by specifying the docx option.

dyndoc dyndoc_ex.txt, docx

This creates dyndoc_ex.docx, shown below:

dyndoc_ex.doct [Compatibility Mode] - Ward

File Home Inset Design Layout References Mailings Review View Help Acrobat) Tell me what you wantto do

Using Stata dynamic tags in a text file with
the dyndoc command

Let us consider an example where we study the mpg and weight variables in agte.dia. In our examples below,
we will first write the commands so that they will be displayed in our target HTML file. Then, we will write the
commands so that Stata will process the Stata dynamic tags, displaying the results of the Stata commands in the
target HTML file.

‘We first use the gysuge command to load the dataset and then describe the data using the deseribe command.

7| <<dd, do>>

syguse auto, clear
describe

<</dd, do>>

This produces the following Stata results:

. sysuse auto, clear

| (1378 Automobile Data)
. describe

Contains data from /uszr/local/statalé/ado/base/a/auto.dta

w gbs: 74 1978 Automckile Data
vars: 12 13 Apr 2018 17:45

(_dta has notes)

storage display value

variable name type format label variable label

make strlz &-18s Make and Model
. price int %8.0gec Price
™ mpg int %8.0g Mileage (mpg)
; rep78 int %8.0g Repair Record 1378
headroom fleat 86.1f Headrocm (inm.)
| trunk e %8.0g Trunk space {cu. ft.)
weight int 3. 0g¢c Weight (1bs.)
. length int %8.0g Length (in.)
turn int 3.0 Turn Cirela (£t.)
displacement int %8.0g Displacement (cu. in.)
b gear ratic float %6.2f Gear Ratio
Pagelof4 5% words [[% English {United States)] S 3 + 120%

26 dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

Specifying arguments in dyndoc allows even more flexibility. For instance, dyndoc_ex.txt a b
c passes a, b, and c in local macros ‘1°, ‘2’, and ‘3’, which can be used in the text file. Below,
we demonstrate how to use arguments with dyndoc to create multiple HTML files from a single text
file.

> Example 3: Specifying arguments

Suppose that we create histograms on a regular basis. To reduce our workload, we create a general
text file that creates histograms for pairs of variables, which we specify as arguments to dyndoc.
This way we do not create a new text file every time we create new histograms. To generalize the
text file, we refer to macro 1 when loading the dataset, so that we may create histograms using any
dataset we specify. We refer to macros 2 and 3 in the <<dd_do>> tags, instead of referring to actual
variable names, because these will change. We use the <<dd_display>> dynamic tag to display
the contents of the macros in the output HTML file, while suppressing the command lines with the
nocommands attribute. Our text file is shown below:

begin dyndoc_ex2.txt

<<dd_version: 2>>
The distribution of <<dd_display: "‘2’">> and <<dd_display: "‘3’">>

Let’s look at the histograms for <<dd_display: "‘2’">> and <<dd_display: "¢3’">>.
. use <<dd_display: "‘1’">>, clear

<<dd_do: nocommands>>
use ‘1’.dta, clear
<</dd_do>>

. histogram <<dd_display: "‘2’">>, freq

<<dd_do: nocommands>>
histogram ‘2’, freq
<</dd_do>>

<<dd_graph>>

. histogram <<dd_display: "‘3’">>, freq

<<dd_do: nocommands>>
histogram ‘3’, freq
<</dd_do>>

<<dd_graph>>

end dyndoc_ex2.txt
You can copy this file to your working directory by typing

. copy http://wuw.stata-press.com/data/r16/reporting/dyndoc_ex2.txt .

Now we issue dyndoc with three arguments: a link to auto.dta followed by variable names
length and trunk.

. dyndoc dyndoc_ex2.txt "https://www.stata-press.com/data/ri16/auto" length trunk

dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document 27

This creates dyndoc_ex2.html, shown below:

[dyndoc_ex2htm b +

C (@ https)//www.stata-press.com/data/r16/reporting/dyndoc_ex2.html G B
Other bookmarks

Apps Stata

The distributions of length and trunk

Let’s look at the histograms for length and trunk.
use https://www.stata-press.com/data/rl6/auto, clear

(1978 Automobile Data)

. histogram length, freq

(bin=8, start=142, width=11.375)

T 180 180 200 220
Length {in.)

. histogram trunk, freq

(bin=8, start=5, width=2.25)

15

10

Fraquancy

15
Trunk space {au. fy

We optionally displayed the information on bin size, width, and starting values that histogram
reports, but we could suppress that as well by specifying the quietly attribute instead.

28 dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

If we want to create histograms with other variables, we do not have to edit our text file. We can
simply issue dyndoc with the corresponding dataset and variable names to create this file. This is as
easy as

. dyndoc dyndoc_ex2.txt "https://www.stata-press.com/data/ri6/auto" price weight,
> replace

which produces the following:

= O X
[dyndoc_ex2.html x +
C @ nttps//www.stata-press.com/data/r16/reporting/dyndoc_ex2 html v :
1 Apps Stata Other bookmarks

The distributions of price and weight

Let’s look at the histograms for price and weight.

. use https://wew.stata-press.com/data/rl6/auto, clear

(1978 Automobile Data)

. histogram price, freq

(bin=8, start=3291, width=1576.875)

a0

o

[5,000 10,000 15,000
Price

. histogram weight, freq

(bin=8, start=176@, width=385)

dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document 29

Next we use the data from Hosmer, Lemeshow, and Sturdivant (2013, 24) to create histograms for
mother’s age and the baby’s birthweight, bwt.

. dyndoc dyndoc_ex2.txt "https://www.stata-press.com/data/r16/1bw" age bwt,
> saving(birthweight.html)

This produces the following:

= O x
[birthweighthtml x +
c ® https://www.stata-press.com/data/r16/reporting/birthweight.html ‘e
£ Apps tata Other bookmarks

The distributions of age and bwt

Let’s look at the histograms for age and bwt.

. use https://www.stata-press.com/data/r16/lbw, clear

(Hosmer & Lemeshow data)

. histogram age, freq

(bin=13, start=14, width=2.3846154)

o
i

age of mather

. histogram bwt, freq

(bin=13, start=709, width=329.36769)

1000 2000 4000 5000

300
birthweight (grams)

30 dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document

Whether you are creating the same graphics for different sets of variables or you need to create
the same reports using different datasets, you can use arguments with dyndoc to streamline your
work process.

d

References
Gillman, M. S. 2018. Some commands to help produce Rich Text Files from Stata. Stata Journal 18: 197-205.

Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken,
NJ: Wiley.

Jakubowski, M., and A. Pokropek. 2019. piaactools: A program for data analysis with PIAAC data. Stata Journal 19:
112-128.

Jann, B. 2017. Creating HTML or Markdown documents from within Stata using webdoc. Stata Journal 17: 3-38.

Rodriguez, G. 2017. Literate data analysis with Stata and Markdown. Stata Journal 17: 600-618.

Also see
[RPT] Dynamic tags — Dynamic tags for text files
[RPT] dyntext — Process Stata dynamic tags in text file
[RPT] markdown — Convert Markdown document to HTML file or Word (.docx) document

http://www.stata-journal.com/article.html?article=pr0068
http://www.stata.com/bookstore/applied-logistic-regression/
https://doi.org/10.1177/1536867X19830909
http://www.stata-journal.com/article.html?article=pr0065
http://www.stata-journal.com/article.html?article=pr0067

Title

dyntext — Process Stata dynamic tags in text file

Description Quick start Syntax Options Remarks and examples
References Also see

Description

dyntext converts a dynamic text file—a file containing both plain text and Stata commands—to
an output file in text format. Stata processes the Stata dynamic tags (see [RPT] Dynamic tags) in the
dynamic text file and creates the output text file.

If you want to convert a dynamic text file to an HTML or Word (. docx) document, see [RPT] dyndoc.
If you want to convert a Markdown document to an HTML or Word document, see [RPT] markdown.

Quick start
Convert text file myfile.txt with Stata dynamic tags to a text file output.txt with Stata output

dyntext myfile.txt, saving(output.txt)

As above, and overwrite the existing output.txt
dyntext myfile.txt, saving(output.txt) replace

Syntax

dyntext srcfile [argumem‘s], saving (targetfile) [options]

srcfile is a plain text file containing Stata dynamic tags. srcfile and targetfile may be any text format
(.txt, .html, .do).

arguments are stored in the local macros ‘1, €2, and so on for use in srcfile; see [U] 16.4.1 Argument
passing.

You may enclose srcfile and targetfile in double quotes and must do so if they contain blanks or other
special characters.

options Description
* saving (targetfile) specify the target file to be saved
replace replaces the target file if it already exists
noremove do not process <<dd_remove>> and <</dd_remove>> dynamic tags
nostop do not stop when an error occurs

*saving (targetfile) is required.

31

32 dyntext — Process Stata dynamic tags in text file

Options

saving(targetfile) specifies the target file to be saved. saving() is required.
replace specifies that the target file be replaced if it already exists.
noremove specifies that <<dd_remove>> and <</dd_remove>> tags not be processed.

nostop allows the document to continue being processed even if an error occurs. By default, dyntext
stops processing the document if an error occurs. The error can be caused either by a malformed
dynamic tag or by executing Stata code within the tag.

Remarks and examples

A dynamic document contains both static narrative and dynamic tags. Dynamic tags are instructions
for dyntext to perform a certain action, such as run a block of Stata code, insert the result of a
Stata expression in text, export a Stata graph to an image file, or include a link to the image file.
Any changes in the data or in Stata will change the output as the document is created. The main
advantages of using dynamic documents are

e results in the document come from executing commands instead of being copied from Stata
and pasted into the document;

e no need to maintain parallel do-files; and

e any changes in data or in Stata are reflected in the final document when it is created.

> Example 1

Let’s consider an example. Suppose that we have dyntext_ex.txt with the following text that
includes Stata dynamic tags. Because we are writing in plain text, we use - to indicate Stata command
names, variable names, etc.

begin dyntext_ex.txt

<<dd_version: 2>>

Using Stata dynamic tags in a text file with the -dyntext- command

Let us consider an example where we study the -mpg- and -weight- variables in
-auto.dta-. In our examples below, we will first write the commands so that
they will be displayed in our output text file. Then, we will write the
commands so that Stata will process the Stata dynamic tags, displaying the
results of the Stata commands in the output text file.

We first use the -sysuse- command to load the dataset and then describe
the data using the -describe- command.
<<dd_ignore>>

<<dd_do>>

sysuse auto, clear

describe

<</dd_do>>

<</dd_ignore>>

This produces the following Stata results:
<<dd_do>>

sysuse auto, clear

describe
<</dd_do>>

Now, we want to check if -mpg- is always greater than O and less than 100.
We use the -assert- command to perform the check. In this case, we do not

dyntext — Process Stata dynamic tags in text file

want to include any output in the output text file, so we use the -quietly-
attribute to modify the behavior of the -dd_do- Stata dynamic tag.

<<dd_ignore>>

<<dd_do:quietly>>

assert mpg > 0 & mpg < 100

<</dd_do>>

<</dd_ignore>>

<<dd_do:quietly>>

assert mpg > 0 & mpg < 100

<</dd_do>>

If the data do not satisfy the conditions, -dyntext- will fail with an error
message, which will occur if we run the same -assert- command in a do-file.

Next, we want to summarize the -weight- variable:

<<dd_ignore>>
<<dd_do>>
summarize weight
<</dd_do>>
<</dd_ignore>>

This produces the following in the output text file:

<<dd_do>>
summarize weight
<</dd_do>>

We want to use the minimum and maximum values of -weight- in a sentence.
Instead of copying and pasting the numbers from the -summarize- output, we can
use the -dd_display- Stata dynamic tag with the -r(min)- and -r(max)-

stored results

<<dd_ignore>>

The variable weight has minimum value <<dd_display: %4.2f ‘r(min)’>> and

has maximum value <<dd_display: %4.2f ‘r(max)’>>.

<</dd_ignore>>

which produces the following in the output text file:

> The variable weight has minimum value <<dd_display: %4.2f ‘r(min)’>>
and has maximum value <<dd_display: %4.2f ‘r(max)’>>.

The -dd_display- dynamic tag uses Stata’s -display- command to evaluate
expressions. It can be used as a calculator. For example, if we want to
include the range = max - min in a sentence, instead of calculating the
number and then copying and pasting it, we can use

<<dd_ignore>>
The variable weight has range <<dd_display: %4.2f ‘r(max)’-‘r(min)’>>.
<</dd_ignore>>

which produces the following in the output text file:
> The variable weight has range <<dd_display: %4.2f ‘r(max)’-‘r(min)’>>.

end dyntext_ex.txt

We can copy this file to our working directory by typing

copy http://www.stata-press.com/data/r16/reporting/dyntext_ex.txt

To generate the output file in Stata, we then type

. dyntext dyntext_ex.txt, saving(dyntext_res.txt)

which produces the following:

34 dyntext — Process Stata dynamic tags in text file

begin dyntext_res.txt

Using Stata dynamic tags in a text file with the -dyntext- command

Let us consider an example where we study the -mpg- and -weight- variables in
-auto.dta-. In our examples below, we will first write the commands so that
they will be displayed in our output text file. Then, we will write the
commands so that Stata will process the Stata dynamic tags, displaying the
results of the Stata commands in the output text file.

We first use the -sysuse- command to load the dataset and then describe
the data using the -describe- command.

<<dd_do>>

sysuse auto, clear
describe
<</dd_do>>

This produces the following Stata results:

. sysuse auto, clear
(1978 Automobile Data)

. describe
Contains data from /usr/local/statal6/ado/base/a/auto.dta
obs: 74 1978 Automobile Data
vars: 12 13 Apr 2018 17:45
(_dta has notes)
storage display value
variable name type format label variable label
make stri8 %-18s Make and Model
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair Record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (1bs.)
length int %8.0g Length (in.)
turn int %8.0g Turn Circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear Ratio
foreign byte %8.0g origin Car type

Sorted by: foreign

Now, we want to check if -mpg- is always greater than O and less than 100.
We use the -assert- command to perform the check. In this case, we do not
want to include any output in the output text file, so we use the -quietly-
attribute to modify the behavior of the -dd_do- Stata dynamic tag.
<<dd_do:quietly>>

assert mpg > 0 & mpg < 100

<</dd_do>>

If the data do not satisfy the conditions, -dyntext- will fail with an error
message, which will occur if we run the same -assert- command in a do-file.

Next, we want to summarize the -weight- variable:

<<dd_do>>
summarize weight
<</dd_do>>

This produces the following in the output text file:

. summarize weight
Variable | Obs Mean Std. Dev. Min Max

+
+

weight 74 3019.459 777.1936 1760 4840

dyntext — Process Stata dynamic tags in text file 35

We want to use the minimum and maximum values of -weight- in a sentence.
Instead of copying and pasting the numbers from the -summarize- output, we can
use the -dd_display- Stata dynamic tag with the -r(min)- and -r(max)-

stored results

The variable weight has minimum value <<dd_display: %4.2f ‘r(min)’>> and

has maximum value <<dd_display: %4.2f ‘r(max)’>>.

which produces the following in the output text file:

> The variable weight has minimum value 1760.00
and has maximum value 4840.00.

The -dd_display- dynamic tag uses Stata’s -display- command to evaluate
expressions. It can be used as a calculator. For example, if we want to
include the range = max - min in a sentence, instead of calculating the
number and then copying and pasting it, we can use

The variable weight has range <<dd_display: %4.2f ‘r(max)’-‘r(min)’>>.
which produces the following in the output text file:
> The variable weight has range 3080.00.

end dyntext_res.txt

Q Technical note

Because quietly and capture suppress the results of the command from being produced, you
should not use these prefix commands with Stata code to be converted by dyntext.
a

References
Gillman, M. S. 2018. Some commands to help produce Rich Text Files from Stata. Stata Journal 18: 197-205.
Jann, B. 2016. Creating LaTeX documents from within Stata using texdoc. Stata Journal 16: 245-263.

Also see

[RPT] Dynamic documents intro — Introduction to dynamic documents

[RPT] Dynamic tags — Dynamic tags for text files

[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] markdown — Convert Markdown document to HTML file or Word (.docx) document

http://www.stata-journal.com/article.html?article=pr0068
http://www.stata-journal.com/article.html?article=pr0062

Title

html2docx — Convert an HTML file to a Word (.docx) document

Description Quick start Syntax Options
Remarks and examples Also see

Description

html2docx converts an HTML file to a Word (.docx) document. The HTML file can be either a
file on the local disk or a URL on a remote website.

Quick start

Convert HTML file myfile.html to a Word document saved as myfile.docx
html2docx myfile

As above, but save the Word document as mydoc.docx
html2docx myfile, saving(mydoc)

As above, and overwrite the existing mydoc.docx
html2docx myfile, saving(mydoc) replace

Syntax

html2docx srcfile [, options}

srcfile is an HTML file, either a local file or a URL. If srcfile is specified without an extension, .html
is assumed. If srcfile contains embedded spaces or other special characters, enclose it in double

quotes.
options Description
saving(targetfile) specify the target Word (.docx) document to be saved
replace replace the target Word (.docx) document if it already exists
nomsg suppress message with link to rargetfile
base (string) specify the base directory or base URL for relative links in srcfile
Options

saving (targetfile) specifies the target Word (.docx) document file to be saved. If rargetfile is
specified without an extension, .docx is assumed. If targetfile contains embedded spaces or other
special characters, enclose it in double quotes. If saving() is not specified, the target filename is
constructed using the source filename (srcfile) with the .docx extension. saving() is required if
the srcfile is a URL.

36

html2docx — Convert an HTML file to a Word (.docx) document 37

replace specifies that the target Word (.docx) document be replaced if it already exists.
nomsg suppresses the message that contains a link to the target file.

base (string) specifies the base directory or the base URL for the relative links in the srcfile.

Remarks and examples

html2docx converts HTML files to Word (.docx) documents. It attempts to preserve the styles
of various HTML elements in the .docx file. However, for some HTML elements, there is no direct
translation for a .docx file. For instance, an apostrophe in an HTML file may be replaced with another
character in the .docx file. Thus, your target Word document may require some cleaning after the
html2docx conversion.

html2docx expects a valid HTML file—one that contains essential HTML elements such as
<!DOCTYPE html>, <html>, <head>, and <body>. If the HTML file is not valid, html12docx will
go through a tidying process to attempt to make it valid. htm12docx will produce an error message
if this tidying process fails. You may check whether an HTML file is valid by using the W3C online
Markup Validation Service at https://validator.w3.org/#validate_by_upload+with_options.

If you are working with a Markdown-formatted text file, you can convert this file directly to a
Word document by specifying the docx option with markdown; see [RPT] markdown. Similarly, you
can use dyndoc to convert a text file with Stata commands and Markdown-formatted text to a Word
document with Stata output; see [RPT] dyndoc.

> Example 1: Converting an HTML file to a Word document

We have an HTML file, graphs.html, that includes some Stata graphs. You can copy this file to
your current working directory by typing

. copy http://www.stata-press.com/data/r16/reporting/graphs.html .

To convert graphs.html to a Word document, we type

. html2docx graphs.html

https://validator.w3.org/#validate_by_upload+with_options

38 html2docx — Convert an HTML file to a Word (.docx) document

The file is saved as graphs.docx. Here is a portion of this file:

graphs.docx [Compatibility Mode] - Word

File Home Insert Design Llayout References Mailings Review View Help Acrobat ' Tell me what you wantto do

2000 3000 4000 5000
Weight (Ibs.)

95% Cl — Fitted values
® Mileage (mpg)

‘We could have also created separate graphs for domestic and foreign cars with the by() option.
See graph twoway Ifitci in the Stata Graphics Reference Manual for details.

Diagnostic plot

There are multiple diagnostic plots available for use after regress. Here, we use rviplot to
graphically check for a relationship between the residuals and fitted values from our model. We
regress mpg on weight and then issue rviplot.

regress mpg weight
rviplot, MO} title(Residuals versus fitted wvalues)

The commands above produce the following graph:

Page2of3 205words L% English [United States) 3] B

We display the second page of the document to show both text and images found in the Word
document. You can see the whole file at http://www.stata-press.com/data/r16/reporting/graphs.docx.

Also see
[RPT] docx2pdf — Convert a Word (.docx) document to a PDF file
[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] markdown — Convert Markdown document to HTML file or Word (.docx) document
[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files

http://www.stata-press.com/data/r16/reporting/graphs.docx

Title

markdown — Convert Markdown document to HTML file or Word (.docx) document

Description Quick start Syntax Options
Remarks and examples Reference Also see

Description

markdown converts a Markdown document to an HTML file or a Word document.

Quick start

Convert Markdown document myfile.txt to an HTML file saved as myfile.html
markdown myfile.txt, saving(myfile.html)

As above, and overwrite the existing myfile.html
markdown myfile.txt, saving(myfile.html) replace

Convert Markdown document myfile.txt to a Word document saved as myfile.docx
markdown myfile.txt, saving(myfile.docx) docx

Syntax

markdown srcfile, saving/(rargetfile) [options]

srcfile is the Markdown document to be converted.

You may enclose srcfile and targetfile in double quotes and must do so if they contain spaces or
special characters.

options Description
* saving (targetfile) HTML file or Word (.docx) document to be saved

replace replace the target HTML file or Word (.docx) document if it

o already exists

hardwrap replace hard wraps (actual line breaks) with the
 tag in an HTML
file or with line breaks in a Word (.docx) document

nomsg suppress message with a link to rargetfile

embedimage embed image files as Base64 binary data in the target HTML file

basedir (string) specify the base directory for relative links in srcfile

docx output a Word .docx document instead of an HTML file

*saving (targetfile) is required.

39

40 markdown — Convert Markdown document to HTML file or Word (.docx) document

Options

saving (targetfile) specifies the target file to be saved. If the rargetfile has the .docx extension, the
docx option is assumed even if it is not specified. saving() is required.

replace specifies that the target file be replaced if it already exists.

hardwrap specifies that hard wraps (actual line breaks) in the Markdown document be replaced with
the
 tag in the HTML file or with a line break in the Word (.docx) file if the docx option is
specified.

nomsg suppresses the message that contains a link to the target file.

embedimage allows image files to be embedded as data URI (Base64-encoded binary data) in the
HTML file. The supported image file types are portable network graphics (.png), JPEG (. jpg),
tagged image file format (.tif), and graphics interchange format (.gif). This option cannot be
used to embed SVG and PDF image file types.

The image must be specified in a Markdown link; you cannot embed images specified by URLSs.
This option is ignored if docx is specified.

basedir (string) specifies the base directory for the relative links in the srcfile. This option only
applies when specifying either the docx option or the embedimage option; otherwise, this option
is ignored.

docx specifies that the target file be saved in Microsoft Word (.docx) format. If the target file has the
.docx extension, the docx option is implied. The conversion process consists of first producing
an HTML file and then using html2docx to produce the final Word document.

Remarks and examples

markdown converts a Markdown document to an HTML file or a Word (.docx) document. A
Markdown document is written using an easy-to-read, plain-text, lightweight markup language. For
a detailed discussion and the syntax of Markdown, see the Markdown Wikipedia page.

Stata uses Flexmark’s Pegdown emulation as its default Markdown document processing engine.
For information on Pegdown’s flavor of Markdown, see the Pegdown GitHub page.

See [RPT] dyndoc and [RPT] dyntext for a full description of Stata’s dynamic document—generation
commands. markdown is used by dyndoc but may also be used directly by programmers.

If you are not familiar with Markdown, we recommend that you first review example 1 below for
a brief introduction to this markup language. If you have used Markdown before, see example 2 for
details on embedding Stata graphs in your HTML file.

> Example 1: Create a basic HTML file with text

Suppose that we want to create a webpage with tips on working with Stata. We have created
markdownl.txt, shown below, using Markdown-formatted text. We include comments to describe
the formatting.

https://en.wikipedia.org/wiki/Markdown
https://github.com/sirthias/pegdown

markdown — Convert Markdown document to HTML file or Word (.docx) document

41

begin markdownl.txt

Tips on working in Stata

<!--- To create a heading, we underline text with equal signs. -->
<!--- Text enclosed in these arrows will be ignored. -->
This webpage will provide useful tips on working with Stata.

<!--- The three dashes above create a horizontal line. -->

Working with strings

<!--- We create a sub-heading with two pound signs. -->

We begin by demonstrating when to use **destring** and **encodex*.

<!--- We use two asterisks around each word we want to format as bold. -->

You should only use **destring** if a variable actually contains numeric values.
For example, in the following dataset income is stored as a string:

(1

webuse destringl, clear

destring income, replace

X3

<!--- We use three back-ticks for blocks of code. —->

end markdownl.txt

You can copy this file into your working directory by typing

. copy http://www.stata-press.com/data/r16/reporting/markdownl.txt .

To convert this text file to an HTML file, we type the following command:

. markdown markdownl.txt, saving(tips.html)

This creates tips.html, which looks like the following:

= O X

[tips.html x +
c @ https://www.stata-press.com/data/r16/reporting/tips.htm i £ :
HH Apps Stata Other bookmarks

Tips on working in Stata

This webpage will provide useful tips on working with Stata.

Working with strings

We begin by demonstrating when to use destring and encode.

You should only use destring if a variable actually contains numeric values. For example. 1n the
following dataset income 1s stored as a string:

webuse destringl, clear
destring imcome, replace

tips

.html is also available at http://www.stata-press.com/data/r16/reporting/.

http://www.stata-press.com/data/r16/reporting/

42 markdown — Convert Markdown document to HTML file or Word (.docx) document

> Example 2: Create an HTML file with Stata graphs

The do-file below creates a couple of graphs using Stata.

begin markdown.do

sysuse auto, clear

twoway lfitci mpg weight || scatter mpg weight, title(MPG as a function of weight)
graph export mpgl.png

regress mpg weight

rvfplot, yline(0) title(Residuals versus fitted values)

graph export diagplot.png, replace

end markdown.do

Suppose we wish to create a webpage (an HTML file) with the instructions on how to produce these
graphs. First, we write markdown2.txt containing Markdown-formatted text and the Stata code to
create the graphs above.

begin markdown2.txt

Creating graphs in Stata

Below we review some diagnostic plots available in Stata, and we demonstrate
how to overlay plots. We use ‘auto.dta‘, which contains pricing and mileage
data for 1978 automobiles.

<!--- In the previous example, we used three back-ticks for a block of code.
Here we use a single back-tick for inline code. -->
Plotting predictions

We are interested in modeling the mean of **mpg+**, miles per gallon, as a function of
*xyeight**, car weight in pounds. We can use **twoway lfitci** to graph the

predicted miles per gallon from a linear regression, as well as the confidence interval:
[4

sysuse auto, clear

twoway 1lfitci mpg weight

cce

To see how these predictions compare to our data, we can overlay a scatterplot

of the actual data

X3

twoway lfitci mpg weight || scatter mpg weight, title(MPG as a function of weight)
ccc

which produces the following graph:

! [Graph of mpg] (mpgl.png)

<!--- We previously used **graph export** to save the graph as a .png

file, which we now embed in the document. -->

We could have also created separate graphs for domestic and foreign

cars with the **by()** option. See

[graph twoway 1fitci] (https://www.stata.com/manuals/g-2graphtwowaylfitci.pdf)
in the Stata Graphics Reference Manual for details.

Diagnostic plot

There are multiple diagnostic plots available for use after **regress**. Here,

we use *xrvfplot** to graphically check for a relationship between the

residuals and fitted values from our model. We regress **mpgk* on

weight and then issue **rvfplot*x.

[1

regress mpg weight

rvfplot, yline(0) title(Residuals versus fitted values)

(Y

The commands above produce the following graph:

! [Diagnostic plot] (diagplot.png)

end markdown2.txt

markdown — Convert Markdown document to HTML file or Word (.docx) document 43

We can copy both of these files to our current working directory by typing

. copy http://wuw.stata-press.com/data/r16/reporting/markdown.do .
. copy http://www.stata-press.com/data/r16/reporting/markdown2.txt .

We now type the following to execute the commands in markdown.do that create the graphs and
export them to PNG files. We then convert markdown?2.txt to an HTML file by using the markdown
command.

. do markdown.do
. markdown markdown2.txt, saving(graphs.html)

This creates graphs.html, which looks like the following:

44 markdown — Convert Markdown document to HTML file or Word (.docx) document

[graphshtml X +

C @ htips;//www.stata-press.com/data/r16/reporting/graphs.htm| r

Other bookmarks

Apps Stata

Creating graphs in Stata

Below we review some diagnostic plots available in Stata, and we demonstrate how to overlay plots. We use auto.dta, which
contains pricing and mileage data for 1978 automobiles.

Plotting predictions

We are interested in modeling the mean of mpg, miles per gallon, as a function of weight, car weight in pounds. We can use
twoway Ifitci to graph the predicted miles per gallon from a linear regression. as well as the confidence interval:

sysuse auto, clear
tuoway 1fitci mpg weight

To see how these predictions compare to our data, we can overlay a scatterplot of the actual data
twoway 1fitci mpg weight || scatter mpg weight, title(MPG as a function of weight)

which produces the following graph

MPG as a function of weight

40

ZUbU 30‘00 40‘00 50‘00
Weight (Ibs.)

95% ClI ———— Fitted values
[] Mileage (mpg)

We could have also created separate graphs for domestic and foreign cars with the by() option. See graph twoway Lfitci in the Stata
Graphics Reference Manual for details.

Diagnostic plot

There are multiple diagnostic plots available for use after regress. Here. we use rvfplot to graphically check for a relationship
between the residuals and fitted values from our model We regress mpg on weight and then issue rviplot

regress mpg weight
rvfplot, yline(8) title(Residuals versus fitted values)

The commands above produce the following graph

Residuals versus fitted values

10 15
|

Residuals
5
L
[]

T
10 15 20 25 30
Fitted values

markdown — Convert Markdown document to HTML file or Word (.docx) document 45

You can view the HTML file at https://www.stata-press.com/data/r16/reporting/graphs.html.

In this example, we ran the Stata commands and created the HTML file in two separate steps.
However, we could do both in a single step with dyndoc, which processes Stata code to embed Stata
output and graphs in the destination HTML file, and calls markdown to process the Markdown-formatted
text (like we did above). See [RPT] dyndoc for information on how to create an HTML or Word
(.docx) file with Stata output from a Markdown text file.

d

Reference

Jann, B. 2017. Creating HTML or Markdown documents from within Stata using webdoc. Stata Journal 17: 3-38.

Also see
[RPT] Dynamic tags — Dynamic tags for text files
[RPT] dyndoc — Convert dynamic Markdown document to HTML or Word (.docx) document
[RPT] dyntext — Process Stata dynamic tags in text file

https://www.stata-press.com/data/r16/reporting/graphs.html
http://www.stata-journal.com/article.html?article=pr0065

Title

putdocx intro — Introduction to generating Office Open XML (.docx) files

Description Remarks and examples References Also see

Description

The putdocx suite of commands creates Office Open XML (.docx) documents that include
text, formatted images, and tables of Stata estimation results and summary statistics. The following
commands are used to create, format, add content to, and save .docx files that are compatible with

Microsoft Word 2007 and later:

Create, save, and append .docx files (see [RPT] putdocx begin)

putdocx begin
putdocx describe
putdocx save
putdocx clear
putdocx append

Creates a .docx file for export

Describes contents of the active .docx file
Saves and closes the .docx file

Closes the .docx file without saving the changes
Appends the contents of multiple .docx files

Insert page breaks in a .docx file (see [RPT]| putdocx pagebreak)

putdocx pagebreak

Adds a page break to the document

putdocx sectionbreak Adds a new section to the document

Add paragraphs with text and images (see [RPT] putdocx paragraph)

putdocx paragraph
putdocx text
putdocx textblock
putdocx textfile

putdocx image
putdocx pagenumber

Adds a new paragraph to the active document

Adds text to the active paragraph

Adds a block of text to the active paragraph or to a new paragraph

Adds a block of preformatted text to a new paragraph with a
predefined style

Appends an image to the active paragraph

Adds page numbers to a paragraph in a header or footer

Add tables to a .docx file (see [RPT] putdocx table)

putdocx table

Creates a new table in the . docx file containing estimation results,
summary statistics, or data in memory

In this manual entry, we show you how to use the putdocx commands by walking you through
a first example that creates a simple report as a .docx file. We also provide some suggestions for
choosing the best workflow for creating your own .docx files.

46

putdocx intro — Introduction to generating Office Open XML (.docx) files 47

Remarks and examples

Remarks are presented under the following headings:

Introduction
A first example
Create a document
Add a paragraph with text
Add an image to a paragraph
Add a table of estimation results
Automating a report
Workflow options for report building
Create a complete document in Stata
Create a document from Stata and Word
Append files in Stata
Append files in Word

Introduction

putdocx is a suite of commands used to write paragraphs, images, and tables to an Office
Open XML (.docx) file. This allows you to create Word documents that include Stata results and
graphs. putdocx generates files compatible with Microsoft Word 2007 and later.

A first example

To get started with the putdocx commands, it is best to see them in action. Here, we demonstrate
how to create a .docx file, include text, add a graph, and incorporate an estimation table all from
within Stata.

This example shows the basic tools you need to create your own document. However, this is
only a starting point. You may want to create more extensive and more customized documents, and
putdocx allows you to do that. We save the details of customizing text, tables, and images for the
individual entries of the commands listed above.

Create a document

To demonstrate, we create a report on low birthweight using data from the study described in
Hosmer, Lemeshow, and Sturdivant (2013, 24).

. use https://www.stata-press.com/data/r16/lbw
(Hosmer & Lemeshow data)

Before we can add any content to the report, we first need to create an active .docx document
in memory. We do this with the putdocx begin command.

. putdocx begin

Because we did not include any options with putdocx begin, the document created uses the letter
page size and the portrait orientation.

48 putdocx intro — Introduction to generating Office Open XML (.docx) files

Add a paragraph with text

Now that the document is created, we can add other objects such as paragraphs, images, and tables
to it. We begin by adding a title to our report. To do this, we add a paragraph using the Title style.
Then we add the text of our title using putdocx text.

. putdocx paragraph, style(Title)
. putdocx text ("Report on low birthweights")
Next we add a heading for the description of our data:
. putdocx paragraph, style(Headingl)
. putdocx text ("Introduction to the data")
Now we are ready to add a standard paragraph where we cite the source of our dataset.

. putdocx paragraph
. putdocx text ("We have data on birthweights from Hosmer, Lemeshow, and ")
. putdocx text ("Sturdivant (2013, 24).")

. putdocx save bwtreport

We save the document we created in memory under the filename bwtreport.docx. When we open
the document in Word, we see the following:

=] s butreport.doc [Compatibility Mode] - Word

file ~ Home Inset Design Layout References Malings Review View Help Acobat Q' Tell mewhat you want to do

Report on low birthweights

N Introduction to the data

We have data on birthweights from Hosmer, Lemeshow, and Sturdivant (2013, 24).

Page1of1 20words [English (United States)] B - 1 + 120%

When we typed putdocx save above, our work was saved and the document was closed, so we
now type putdocx begin to continue our work. So far, we have only added strings to our paragraphs,
but text can also include any valid Stata expression. In the next section of our report, we add text
with summary statistics for our data by referring directly to the results stored after summarize. We
type return list and see that the mean is stored in the r (mean) scalar and with more decimal
places than we wish to include in our sentence. Therefore, we use the %5.2f format to request that
only two digits be displayed after the decimal.

putdocx intro — Introduction to generating Office Open XML (.docx) files 49

. putdocx begin

. putdocx paragraph, style(Headingl)
. putdocx text ("Summary statistics")
. summarize bwt

Variable | Obs Mean Std. Dev. Min Max

bwt | 189 2944 .286 729.016 709 4990
. return list

scalars:
r(N) = 189
r(sum_w) = 189
r(mean) = 2944.285714285714
r(Var) = 531464.3541033434
r(sd) = 729.0160177275554
r(min) = 709
r(max) = 4990
r(sum) = 556470

. putdocx paragraph

. putdocx text ("We have the recorded weight for ‘r(N)’ babies ")
. putdocx text ("with an average birthweight of ")

. putdocx text (" ‘r(mean)’ "), nformat(}5.2f)

. putdocx text (".")

To review our document after adding this section, we save it again. However, because we want to
add this new content to our existing bwtreport.docx file, we specify that we are appending to the
file.

. putdocx save bwtreport, append

Our updated bwtreport.docx now looks like this:

=] s butreport.doc [Compatibility Mode] - Word

file — Home Inset Design Layout References Malings Review View Help Acobat Q' Tell mewhat you want to do

Report on low birthweights

! Introduction to the data

We have data on birthweights from Hosmer, Lemeshow, and Sturdivant (2013, 24).

~ Summary statistics

We have the recorded weight for 189 babies with an average birthweight of 2944.29.

Page1of1 36words [[¥ English (United States)] B - 1 + 120%

Add an image to a paragraph

Next we graphically compare the average birthweights for babies according to the mother’s
characteristics. We begin this section of the report by adding another heading.

50 putdocx intro — Introduction to generating Office Open XML (.docx) files

. putdocx begin
. putdocx paragraph, style(Headingl)
. putdocx text ("Birthweight by mother’s smoking status")

We graph the mean birthweight for babies with mothers who smoke versus those who do not, and
separately for mothers with and without a history of hypertension. We use graph hbar to create our
graph, specifying a title for the overall graph as well as for the y axis. We must convert the graph
to one of the supported image formats: .jpg, .emf, .tif, or .png. We save it as a .png file with
graph export.

. graph hbar bwt,
> over(ht,relabel(1l "No hypertension" 2 "Has history of hypertension"))

over (smoke) asyvars ytitle(Average birthweight (grams)) title(Baby birthweights)
> subtitle(by mother’s smoking status and history of hypertension)

A\

graph export bweight.png
(f11e bweight.png written in PNG format)

Now we use putdocx image to append it to the active paragraph. To center the image, we specify
the alignment of the paragraph. We also resize the image by setting the width at 4 inches and the
height at 2.8 inches.

. putdocx paragraph, halign(center)
. putdocx image bweight.png, width(4) height(2.8)
. putdocx save bwtreport, append

We are ready to save our work again and take a look at our report. Again, we specify the append
option with putdocx save to add the bar graph to the existing content of bwtreport.docx. Now
the document contains the sections we previously exported plus the bar graph:

El s butreport.doc [Compatibility Mode] - Word

file ~ Home Insert Design Layout References Malings Review View Help Acobst Q' Tell mewhat you want to do

| —— s e—

Report on low birthweights

- Introduction to the data

We have data on birthweights from Hosmer, Lemeshow, and Sturdivant (2013, 24).

o Summary statistics

We have the recorded weight for 189 habies with an average birthweight of 2944.29.

Birthweight by mother’s smoking status

Baby birthweights
by mother's smoking status and history of hypertension

nonsmoker

smoker

- 0 1,000 2,000 3,000
‘Average birthweight (grams)

| N No hypertension N Has history of hypertension |

Page1of1 4lwords [[R English (United States) E B -] + 120%

putdocx intro — Introduction to generating Office Open XML (.docx) files 51

Add a table of estimation results

Next we add a table with regression results after modeling birthweight as a function of the mother’s
age and whether she smokes. We export a table named bweight, including all the statistics shown
in the regression output below. This is done effortlessly by specifying the etable output type with
putdocx table. We also use the title() option to add a title to our table.

. putdocx begin
. putdocx paragraph, style(Headingl)
. putdocx text ("Regression results")

. regress bwt smoke age, noheader

but Coef. Std. Err. t P>t [95% Conf. Intervall]
smoke -277.2919 106.9797 -2.59 0.010 -488.3414 -66.24235
age 11.1787 9.880723 1.13 0.259 -8.313995 30.67139
_cons 2793.083 240.9336 11.59 0.000 2317.77 3268.397

. putdocx table bweight = etable, title("Linear regression of birthweight")
. putdocx save bwtreport, append

Again, we use append to add to the existing content in the file. bwtreport.docx now looks like
this:

H -0 = bwtreport.docx [Compatibility Mode] - Word

File Home Inset Design Layout References Mailings Review View Help Acrobat © Tell me what you want to do 5 Share

o | — S R D TS A s —

Report on low birthweights

- Introduction to the data

We have data on birthweights from Hosmer, Lemeshow, and Sturdivant (2013, 24).

o Summary statistics

We have the recorded weight for 189 babies with an average birthweight of 2944.29,

Birthweight by mother's smoking status

Baby birthweights
by mother’s smaking status and history of hypertension

nonsmoker

smoker

0 3,000

1,000 2,000
‘Average birthweight (grams)
| W N nypertension NENEEE Has nistory of hypertension

Regression results

. Linear regression of birthweight
b bwt Coef. Std. Err. t P> |t] [95% Conf. Interval]

smoke -277.2919 106.9797 -2.59 0.010 -488.3414 -66.24235
age 11.1787 9.880723 113 0.259 -8.313995 30.67139
cons 2793.083 240.9336 11.59 0.000 2317.77 3268.397

Pagelof1 T7words [[& English (United States)] B -] + 120%

52 putdocx intro — Introduction to generating Office Open XML (.docx) files

We will treat this as our final report. However, you will likely want to create .docx files with more
content and perhaps more customization. See [RPT] putdocx begin for information on formatting the
document as a whole, including specifying page size, page layout, font, and headers and footers. See
[RPT] putdocx paragraph for information on adding entire blocks of text to a document; modifying
the style, font, alignment, and other formatting of a paragraph; customizing the size and location of an
image; and adding content to a header or footer. See [RPT] putdocx table for information on creating
tables from stored results, matrices, data, and even images and for information on customizing these
tables. Finally, see [RPT] putdocx pagebreak for information on adding page breaks and section
breaks to your document.

Automating a report

In the process of creating our report, we saved the document after exporting each section, specifying
append to add on to our previous work. Saving the document intermittently allowed us to view the
document in each stage of progress to ensure that it looked the way we wanted.

Once we have the layout we want, we do not need to view the Word document at each stage.
Perhaps we need to create variations of this report rather frequently. Say that we receive monthly
data on birthweights from a local hospital and we want to update the report with the new data. We
condense the series of commands we previously ran by omitting all but the final putdocx save
command and all but the initial putdocx begin command. We save our series of commands in a
do-file. We add version 16.0 to the top of our do-file to ensure that in future versions of Stata, our
commands will continue to run and produce the same results they do today. In addition, because we
do not want to save the report with the same name each time we run the do-file, we add the args
filename command to the top of our file; see [P] syntax for information on this command. Now
we can specify the name of the new Word document to be created when we run this file with the do
command.

begin bwtreport.do
version 16.0

args filename

putdocx begin

putdocx paragraph, style(Title)

putdocx text ("Report on low birthweights")

putdocx paragraph, style(Headingl)

putdocx text ("Introduction to the data")

putdocx paragraph

putdocx text ("We have data on birthweights from Hosmer, Lemeshow, and ")
putdocx text ("Sturdivant (2013, 24).")

putdocx paragraph, style(Headingl)

putdocx text ("Summary statistics")

summarize bwt

putdocx paragraph

putdocx text ("We have the recorded weight for ‘r(N)’ babies ")

putdocx text ("with an average birthweight of ")

putdocx text (" ‘r(mean)’ "), nformat(putdocx text (".")

putdocx paragraph, style(Headingl)

putdocx text ("Birthweight by mother’s smoking status")

graph hbar bwt, over(ht,relabel(l "No hypertension" 2 "Has history of hypertension")) ///
over (smoke) asyvars ytitle(Average birthweight (grams)) title(Baby birthweights) ///
subtitle(by mother’s smoking status and history of hypertension)

graph export bweight.png

putdocx paragraph, halign(center)

putdocx image bweight.png, width(4) height(2.8)

putdocx paragraph, style(Headingl)

putdocx text ("Regression results")

putdocx intro — Introduction to generating Office Open XML (.docx) files 53

regress bwt smoke age, noheader
putdocx table bweight = etable, title("Linear regression of birthweight")
putdocx save ‘"‘filename’"’, replace

end bwtreport.do

After saving our do-file with the name bwtreport.do, we can now type

. use lbw_june, clear
. do bwtreport lbwreport_june

to create a new report in the same format as the previous one. This report will be run on 1bw_june.dta
(whereas we used 1bw.dta earlier), and it will be saved under the filename lbwreport_june.docx.

Workflow options for report building

The putdocx suite is both capable and flexible because it has an abundance of formatting options
to create and format your document completely from within Stata. However, by exporting content to a
.docx file, it also allows you to interact Stata’s capabilities with Word’s additional formatting features.
Depending on the contents of your document, you may find that one of the following methods of
interacting features in Stata and Word is most suitable to creating your document:

1. Create a Word document completely from within Stata.
2. Use Stata to append documents created in both Stata and Word to complete a report.
3. Within a Word document, insert files created with Stata to complete a report.

We discuss the advantages of each approach below.

Create a complete document in Stata

In A first example and Automating a report, we demonstrated how to create a Word document
directly from Stata. We showed how to automate the process of creating a report once you have
decided on specific formatting. Automation of reports and easy reproducibility are advantages of
creating your document completely from within Stata. In addition, you can incorporate many of
Stata’s other features in the same do-file that creates the .docx file. For instance, you might include
assert commands in your do-file to verify expectations you have of your data before generating
your report.

One disadvantage of this approach is that it is not as conducive to reports with large amounts of
text. You may prefer to type text in Word to take advantage of spell checking and other features.
Also, if you create documents using Word’s themes, tables of contents, bibliographies, and the like,
you will need to access those from directly within Word. If either of these apply to the document
you wish to create, consider method 2 or 3.

Create a document from Stata and Word

Methods 2 and 3 correspond to building your document in fragments, which may be preferable
for three reasons. One is that you can write lengthy segments that are not dependent on Stata results
or graphs directly in Word. While you can add blocks of text with putdocx, it may be done more
easily in Word. You can then combine the file created in Word with another file created by using
putdocx. Another reason is that, if you are writing a lengthy report, you can focus on one section
at a time. Perhaps you have not quite decided how best to display your data graphically or what
statistics you want to include in your estimation tables. You can save each section under its own
filename as you complete it and then combine all the components. The third reason is that you do not
have to re-create any formatting with putdocx that you already have in an existing Word document.

54 putdocx intro — Introduction to generating Office Open XML (.docx) files

Whether you piece your document together in Stata or Word will likely depend on the amount of
graphs and tables you will be including, and whether you are still deciding on formatting options
or already have a customized template. If your report is centered on graphs and estimation results
produced in Stata, you may find it easier to append all your files with putdocx—method 2. This
method might also be preferred if you already have a template in Word with customized formatting.

Append files in Stata

Using this approach, the final .docx file is created in multiple steps. One or more .docx files are
created in Word directly. Likewise, one or more .docx files are created using putdocx. We then use
putdocx append or putdocx save, append to combine all of these files into a final .docx file.

The advantage of appending files in Stata is best explained with a hypothetical example. Suppose
you are creating a report that will consist of an introduction, a graphics section, and an estimation
section. You have already written a long introduction, added a header and footer, and saved your work
under the filename report.docx. You create a file in Stata for your work on the graphics section
and add the heading “Graphics”. After revising and formatting your graphs, you save your work:

. putdocx save graphs

Next you create a file for your work on estimation results with the heading “Estimation”. You test
whether your table of results is better displayed under a portrait or landscape layout and whether the
table should include certain statistics. Once you decide which results to display, you save your work
for the estimation section:

. putdocx save estimation

Now you can complete your report by appending the graphics and estimation sections to your file
containing the introduction.

. putdocx append report graphs estimation

The document report.docx will now contain your introduction, followed by the graphs, and
finally the estimation results. The header and footer you formatted initially for report.docx will be
applied throughout the complete document. Also, if you choose to add a table of contents to your
report, the graphics and estimation headers will be incorporated into it. Using this method to build
your document allowed you to experiment with the formatting of your graphs and tables, while easily
applying your customized header and footer.

Append files in Word

Using this approach, the final document is created using Word. Typically, a single Word file is
created that includes the majority of the content as well as the desired formatting. One or more
segments of the document that contain Stata results are created using putdocx. We use Word’s insert
features to incorporate the documents created by putdocx into the main Word document.

One advantage of inserting portions of your report into a main Word document is that you can
experiment with different layouts. Suppose you are discussing a graph in your document, and you
are not sure where it should be placed. Within Word, you can try inserting the graph in different
gaps between the text. You can instantly see which structure makes the most sense for your report.

Another advantage is that you can also interact Excel’s capabilities by linking in an Excel worksheet
in your Word document. Whether you worked directly in Excel or you worked in Stata and exported
some results by using putexcel, you can link content from Excel in Word. This way, you can
interact Excel’s features, Word’s features, and Stata results all in one document.

putdocx intro — Introduction to generating Office Open XML (.docx) files 55

This approach to building your document might also be preferable if you only need to include
a limited number of graphs or statistics from Stata and you have already created a Word document
customized to your preference.

References
Chatfield, M. D. 2018. Graphing each individual’s data over time. Stata Journal 18: 503-516.

Hosmer, D. W, Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken,
NJ: Wiley.

Jann, B. 2016. Creating LaTeX documents from within Stata using texdoc. Stata Journal 16: 245-263.

Also see
[RPT] putdocx begin — Create an Office Open XML (.docx) file
[RPT] putdocx pagebreak — Add breaks to an Office Open XML (.docx) file
[RPT] putdocx paragraph — Add text or images to an Office Open XML (.docx) file
[RPT] putdocx table — Add tables to an Office Open XML (.docx) file

http://www.stata-journal.com/article.html?article=gr0074
http://www.stata.com/bookstore/applied-logistic-regression/
http://www.stata-journal.com/article.html?article=pr0062

Title

putdocx begin — Create an Office Open XML (.docx) file

Description Quick start Syntax Options
Remarks and examples Also see

Description
putdocx begin creates an Office Open XML (.docx) file. This is the active document that the
remaining putdocx commands modify.
putdocx describe describes the active .docx file.
putdocx save saves and closes the .docx file.
putdocx clear closes the .docx file without saving.

putdocx append appends the contents of one or more .docx files to another .docx file.

Quick start

Create a document in memory onto which subsequent contents are added
putdocx begin

Create a document with page numbers in the footer named footer1, using uppercase Roman numerals
putdocx begin, pagenum(upper_roman) footer(footerl)

Save the document in memory to disk as myfile.docx
putdocx save myfile

Append the contents of filename2.docx and filename3.docx to the end of the contents in
filenamel.docx

putdocx append filenamel filename2 filename3

As above, but save the resulting document in a file named filename4.docx
putdocx append filenamel filename2 filename3, saving(filename4)

56

putdocx begin — Create an Office Open XML (.docx) file 57

Syntax
Create document for export

putdocx begin [, begin_oplions]

Describe active document

putdocx describe

Save and close document

putdocx save filename [, save_opzions]

Close without saving

putdocx clear

Append contents of documents

putdocx append filename; filenames [ﬁlenameg [}] [, append_opti(ms]

begin_options Description

pagesize (psize) set document page size

landscape change document orientation to landscape

font (fspec) set font, font size, and font color for the document
pagenum (pnspec) set page number format

header (hname) add a header

footer (fname) add a footer

save_options Description

replace replace filename with the active document

append append the active document to the end of filename
append (ap_opts) append active document to filename and change page break,

header, and footer settings

Only one of replace, append, or append (ap_opts) may be specified.

append_options Description

saving (filename [, replace]) save the document to filename; use replace to overwrite
existing filename

pagebreak begin each appended file on a new page

headsrc(first|last | own) specify the document from which headers and footers are to
be used; default is headsrc(first)

pgnumrestart restart page numbering on the first page of each appended

document

58 putdocx begin — Create an Office Open XML (.docx) file

Options

Options are presented under the following headings:

Options for putdocx begin
Options for putdocx save
Options for putdocx append

Options for putdocx begin

pagesize (psize) sets the page size of the document. psize may be letter, legal, A3, A4, or
B4JIS. The default is pagesize(letter).

landscape changes the document orientation from portrait (the default) to landscape.
font (fontname [, size [, color]]) sets the font, font size, and font color for the document.

fontname may be any valid font installed on the user’s computer. If fontname includes spaces, then
it must be enclosed in double quotes. If fontname is not specified, the computer’s default font
will be used.

size is a numeric value that represents font size measured in points. The default is 11.

color sets the text color. color may be one of the colors listed in Colors of [RPT] Appendix for
putdocx; a valid RGB value in the form ### ### ###, for example, 171 248 103; or a valid
RRGGBB hex value in the form ######, for example, ABF867.

The font size and font color may be specified individually without specifying fontname. Use
font ("", size) to specify the font size only. Use font ("", "", color) to specify the font color
only.

pagenun (pnformat [, start [, chapStyle [, chapSep]]]) specifies the format and starting page
for page numbers.

pnformat specifies the page number format, such as decimals enclosed in parentheses or uppercase
Roman numerals. For a complete list of page number formats, see Page number formats of
[RPT] Appendix for putdocx.

start specifies the starting page number and must be an integer greater than or equal to 0. The
default is 1.

chapStyle specifies the style used for chapter headings. The default chapStyle is Headingl. For a
complete list of chapter styles, see Chapter styles of [RPT] Appendix for putdocx.

chapSep specifies the symbol used to separate chapter numbers and page numbers. chapSep may
be colon, hyphen, em_dash, en_dash, or period. The default is hyphen.

This option is not required for including page numbers in your document, unless you want to
include chapter numbers as well. To include chapter numbers, specify the style used to indicate
chapters (chapStyle), and optionally, the symbol used to separate chapter and page numbers.

When specifying chapStyle and chapSep, chapter numbers will be reported along with the page
numbers. To activate these options, you must specify a multilevel list style in Word that includes
headings.

header (hname) adds the header named hname to the document. The content of hname, including
page numbers, can be defined with either putdocx paragraph or putdocx table. hname must
be a valid name according to Stata’s naming conventions; see [U] 11.3 Naming conventions.

putdocx begin — Create an Office Open XML (.docx) file 59

footer (fname) adds the footer named frname to the document. The content of fname, including page
numbers, can be defined with either putdocx paragraph or putdocx table. fname must be a
valid name according to Stata’s naming conventions; see [U] 11.3 Naming conventions.

Options for putdocx save

replace specifies to overwrite filename, if it exists, with the contents of the document in memory.
append specifies to append the contents of the document in memory to the end of filename.

append (ap—_opts) specifies to append the contents of the document in memory to filename and
indicates whether new content will be added on a new page, which header and footer to use, and
whether to restart page numbering for each document. ap_opts are pagebreak, headsrc(), and
pgnumrestart.

pagebreak appends the active document beginning on a new page.

headsrc(file|active|own) specifies the file whose header and footer will be used in the
document.

headsrc(file) is the default; it applies the header and footer from filename throughout the
document.

headsrc(active) applies the header and footer from the active document throughout the
document.

headsrc(own) specifies that each document, filename and the active document, use its own
header and footer. If the active document does not have a header or footer, it will inherit
the header or footer from filename.

pgnumrestart restarts page numbering in each document; pagebreak must be specified with
pgnumrestart.

Options for putdocx append

saving (filename [, replace]) specifies to append the contents of the existing document filenames
to the end of filename, and then write the result to the new document filename. If filename already
exists, it can be overwritten by specifying replace. By default, filename; is overwritten with the
document created by appending content from filenames.

If more than two files are specified, the contents are appended in the order in which the files are
listed. For example, filenames is appended to filename1, filenames is appended to the result of the
first append, and so forth.

pagebreak begins each appended file on a new page.
headsrc(first|last |own) specifies the document from which headers and footers are to be used.

headsrc(first), the default, specifies that the header and footer from the first document being
appended, filename,, be applied throughout the document.

headsrc(last) specifies that the header and footer from the last document be applied throughout
the document. headsrc(last) may not be specified with pgnumrestart.

headsrc(own) specifies that each file being appended use its own header and footer. If any file
does not have a header or footer, it will inherit the header or footer from the previous document.

pgnumrestart restarts page numbering on the first page of each appended document. The
pagebreak option must be specified with pgnumrestart. This option may not be specified
with headsrc(last).

60 putdocx begin — Create an Office Open XML (.docx) file

Remarks and examples

Remarks are presented under the following headings:

Creating and formatting a .docx file
Including headers and footers
Describing the document

Saving or clearing the .docx file
Appending .docx files

Creating and formatting a .docx file

Before we can write to a .docx file by using putdocx, we need to create an active .docx
document in memory by using the putdocx begin command. We can simply type

. putdocx begin

to create a document. We could now add content to this document. For information on adding text
or images to the document, see [RPT| putdocx paragraph. For information on adding tables to the
document, see [RPT] putdocx table.

Because we did not include any options in the above putdocx begin command, it creates a
letter-size document with pages in portrait orientation. It uses our computer’s default font type and
font color in 11-point size. We can specify other formats for the document as a whole by using the
options available with putdocx begin. We can specify the page size, page orientation, and font
properties for the document. We can also include page numbers, headers, and footers.

For example, to create a document with letter-size pages in landscape orientation and 11-point
Garamond font, we type

. putdocx begin, landscape font(Garamond)

The page size and orientation set with putdocx begin remain in effect until a section break is added.

The font properties specified with putdocx begin remain in effect throughout the document, but
we can change these properties for each paragraph (or each sentence or even each word) with the
options available in [RPT] putdocx paragraph. When specified without options, putdocx paragraph
and putdocx text will default to the font properties specified in putdocx begin. Any text added
with putdocx textblock will also default to the font properties specified in putdocx begin, unless
we specify some other format by using dynamic tags within the text block.

Headers and footers remain in effect throughout the document by default, but they can be changed
when a new section is added to the document.

Including headers and footers

To create a document that includes a header, footer, or page numbers requires multiple steps. First,
we need to include either the header () or footer () option in our putdocx begin command, and
if desired, we can customize the page numbers using the pagenum() option. Then we use either
putdocx paragraph or putdocx table to add content, including page numbers, to the header or
footer.

For instance, suppose we are creating an academic progress report for a local high school, and
we want to include a footer with the page number and school name. We can create our document as
follows:

. putdocx begin, pagenum(decimal) footer (npage)

putdocx begin — Create an Office Open XML (.docx) file 61

In this command, we specified the decimal format for the page numbers, and we added a blank footer
to our document.

Now, we can define the contents of the footer npage by using putdocx paragraph.

. putdocx paragraph, tofooter(npage)
. putdocx text ("Mountain High Report: ")
. putdocx pagenumber

This creates a paragraph with the school name and page number. The tofooter () option directed the
content of this paragraph to the footer, npage, rather than including it in the body of the document.

Describing the document

To view a document, we must first save the file. However, if we have been adding text, images,
and tables to a document, we can describe the contents of the active document without saving it.

. putdocx describe

This reports the number of paragraphs and tables that have been added to the document.

Saving or clearing the .docx file
When we have finished adding content to our document, we can save it under a given filename,
say, myfile.docx.

. putdocx save myfile, replace

The replace option specifies that we wish to overwrite the contents of an existing myfile.docx.

If the current document is a continuation of work stored in an existing file—say, oldfile.docx—
then we can instead append the current document’s contents to the existing file by typing

. putdocx save oldfile, append
This command adds the content of the active document that we have been working on to oldfile.docx,
beginning directly below its original content. The new combined document is saved as o1dfile.docx.

Issuing the putdocx save command automatically clears the active document from memory and
closes it after it is saved.

Sometimes, we may want to clear the active document from memory without saving it. Perhaps
we accidentally added a table with the wrong numeric formatting or we forgot to label a graph. We
can type

. putdocx clear

This command clears the document in memory and automatically closes the document without saving.

putdocx clear is especially important if we are running a do-file with a series of putdocx
commands repeatedly. Maybe we have putdocx begin at the top of our do-file and when we try
to run it again, we get an error message. We must either save our work or close the document with
putdocx clear before we can issue putdocx begin again.

62 putdocx begin — Create an Office Open XML (.docx) file

Appending .docx files

Sometimes, it is easiest to create a final document by appending multiple .docx files. Perhaps
you create parts of a report directly within Word and create other parts using putdocx. Perhaps you
prefer to work on your document out of order and then compile the parts at the end. In these cases,
we can use the putdocx append command.

Say we have four files that we are now ready to merge: partl.docx, part2.docx, part3.docx,
and part4.docx. We can type

. putdocx append partl part3 part2 part4, saving(allparts)

putdocx append appends files in the order in which they are specified, so the above command will
append part3 to the end of partl, part2 to the end of part3, and part4 to the end of part2.
We also specified to save the resulting document in a new file called allparts.docx.

Oops! part2 should have come before part3 in the merged file. We can fix that by typing

. putdocx append partl part2 part3 part4, saving(allparts, replace)

By including replace in the saving() option, we request that the resulting document overwrite the
existing contents of allparts.docx.

If we do not use the saving() option, for example,

. putdocx append partl part2 part3 partéd

then the merged document is saved in the first-listed file, namely, part1l.docx.

Also see
[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files
[RPT] putdocx pagebreak — Add breaks to an Office Open XML (.docx) file
[RPT] putdocx paragraph — Add text or images to an Office Open XML (.docx) file
[RPT] putdocx table — Add tables to an Office Open XML (.docx) file
[RPT] Appendix for putdocx — Appendix for putdocx entries

Title

putdocx pagebreak — Add breaks to an Office Open XML (.docx) file

Description Quick start Syntax Options
Remarks and examples Also see

Description

putdocx pagebreak adds a page break to the document, placing subsequent content on the next
page of the document.

putdocx sectionbreak adds a new section to the document and begins the section on the next
page. It lets you vary the formatting of the pages within a single document. This command is most
useful when you want to mix portrait and landscape layouts or apply different headers and footers
across sections of your document.

Quick start

Add a page break to the document
putdocx pagebreak

Begin a new section with a landscape layout in the document
putdocx sectionbreak, landscape

Begin a new section with the header appendix, and add the text “Appendix” to this header

putdocx sectionbreak, header(appendix)
putdocx paragraph, toheader (appendix)
putdocx text ("Appendix")

63

64 putdocx pagebreak — Add breaks to an Office Open XML (.docx) file

Syntax
Add page break to document

putdocx pagebreak

Add section break to document

putdocx sectionbreak [, options]

options Description
pagesize (psize) set page size of the section
landscape use a landscape orientation for the section
pagenun (pnspec) set page number format
header (hname) add a header
footer (fname) add a footer
Options

pagesize (psize) sets the page size of the section. psize may be letter, legal, A3, A4, or B4JIS.
The default is pagesize(letter).

landscape changes the section orientation from portrait (the default) to landscape.

pagenun (pnformat [, start [, chapStyle [, chapSep]]]) specifies the format and starting page
for page numbers.

pnformat specifies the page number format, such as decimals enclosed in parentheses or uppercase
Roman numerals. For a complete list, see Page number formats of [RPT] Appendix for putdocx.

start specifies the starting page number and must be an integer greater than or equal to 0. The
default is 1.

chapStyle indicates the style used for chapter headings. The default chapStyle is Headingl. For
a complete list of chapter styles, see Chapter styles of [RPT] Appendix for putdocx.

chapSep specifies the symbol used to separate chapter numbers and page numbers. chapSep may
be colon, hyphen, em_dash, en_dash, or period. The default is hyphen.

This option is not required for including page numbers in your document, unless you want to
include chapter numbers as well. To include chapter numbers, specify the style used to indicate
chapters (chapStyle), and optionally, the symbol used to separate chapter and page numbers.

When specifying chapStyle and chapSep, chapter numbers will also be reported along with the
page numbers. To activate these options, you must specify a multilevel list style in Word that
includes headings.

header (hname) adds the header hname to the section. The content of hname, including page numbers,
can be defined with either putdocx paragraph or putdocx table. hname must be a valid name
according to Stata’s naming conventions; see [U] 11.3 Naming conventions.

footer (fname) adds the footer fname to the section. The content of fname, including page numbers,
can be defined with either putdocx paragraph or putdocx table. fname must be a valid name
according to Stata’s naming conventions; see [U] 11.3 Naming conventions.

putdocx pagebreak — Add breaks to an Office Open XML (.docx) file 65

Remarks and examples

The putdocx pagebreak and putdocx sectionbreak commands are useful for organizing your
.docx document. Whether you wish to insert page breaks for each new section in your file or you
want to format different segments of your document differently, you can do this with these two
commands.

To begin all subsequently added content on the next page in the active document, use the putdocx
pagebreak command. putdocx pagebreak will retain the document formatting in effect, such as
page size and headers, when you issue the command.

To begin all subsequently added content on the next page and also change the document formatting,
use the putdocx sectionbreak command with its options. The page size and orientation specified
with putdocx sectionbreak will remain in effect until you issue another putdocx sectionbreak
command. putdocx sectionbreak with no options defaults to a letter-size page in portrait orientation.
On the other hand, the header (or footer) applied with putdocx sectionbreak will continue to be
applied after section breaks and page breaks, unless you specify another header (or footer).

> Example 1: Modifying page size and orientation

Suppose we created a new document with letter-size pages in a portrait orientation by typing

. putdocx begin

After we have added some content to this document, we may need to include an extra-wide table.
Say that our table has so many columns that we need to not only change the page orientation but
also use a larger page. We need to add a section break:

. putdocx sectionbreak, pagesize(legal) landscape

Issuing the command above adds a new section that begins on the next page. This section will have
legal-size pages and a landscape orientation.

We add our table (see [RPT] putdocx table) and now wish to return to the original letter-size page
in portrait orientation. We do this with another section break.

. putdocx sectionbreak

As mentioned above, putdocx sectionbreak with no options defaults to a letter-size page in portrait
orientation.

N

The putdocx sectionbreak command is helpful if you have, for example, wide tables or large
images, but you do not want those inclusions to dictate the size or orientation of all the pages in
your document. It is also helpful if your document is divided into sections, and you want to apply a
different header or footer to each section.

> Example 2: Modifying header content

Suppose we are creating an annual report for the nearby community college that tracks the changes
in the grade point average for each semester. Because this is a lengthy report, we organize it by
specifying the semester we are reporting on in the header. We set up our document as follows:

putdocx begin, header(fallil8)
putdocx paragraph, toheader(falll8)
putdocx text ("Fall 2018 ")

putdocx paragraph, style(Headingl)

66 putdocx pagebreak — Add breaks to an Office Open XML (.docx) file

putdocx text ("Changes in GPA")
putdocx sectionbreak, header(empty)

putdocx sectionbreak, header (winter18)
putdocx paragraph, toheader(winteri18)
putdocx text ("Winter 2018 ")

putdocx paragraph, style(Headingl)
putdocx text ("Changes in GPA")

With the first putdocx sectionbreak command above, we added a blank page between the “Fall
2018” section and the “Winter 2018 section. Because we did not want to include any headers in
this section, we specified the header () option with the header name empty for this section but did
not define the content of empty, essentially adding a blank header.

This is just the frame for our document. We can now use other putdocx commands to insert any
text, tables with summary statistics, graphics, and additional headings.

4

Also see
[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files
[RPT] putdocx begin — Create an Office Open XML (.docx) file
[RPT] putdocx paragraph — Add text or images to an Office Open XML (.docx) file
[RPT] putdocx table — Add tables to an Office Open XML (.docx) file
[RPT] Appendix for putdocx — Appendix for putdocx entries

Title

putdocx paragraph — Add text or images to an Office Open XML (.docx) file

Description Quick start Syntax Options
Remarks and examples Also see

Description
putdocx paragraph adds a new paragraph to the document. The newly created paragraph becomes
the active paragraph. All subsequent text or images will be appended to the active paragraph.

putdocx text adds text to the paragraph created by putdocx paragraph. The text may be a
plain text string or any valid Stata expression (see [U] 13 Functions and expressions).

putdocx textblock begin adds a new paragraph to which a block of text can be added.

putdocx textblock append appends a block of text to the active paragraph.

putdocx textblock end ends a block of text initiated by putdocx textblock begin or putdocx
textblock append.

putdocx textfile adds a block of preformatted text to a new paragraph with a predefined style.

putdocx pagenumber adds page numbers to a paragraph that is to be added to the header or
footer.

putdocx image embeds a portable network graphics (.png), JPEG (.jpg), enhanced metafile
(.emf), or tagged image file format (.tif) file in the active paragraph. Adding an image is not
supported on console Stata for Mac.

Quick start

Add a paragraph to the document with centered horizontal alignment
putdocx paragraph, halign(center)

Append the text “This is paragraph text.” to the active paragraph and format the text as bold
putdocx text ("This is paragraph text."), bold

Add a PNG image saved as myimg to the active paragraph
putdocx image myimg.png

Add content to the header myheading with the text “My Header ” followed by the page number
putdocx paragraph, toheader (myheading)
putdocx text ("My Header ")
putdocx pagenumber

Add a new paragraph containing the text between the two putdocx textblock commands
putdocx textblock begin
This paragraph is written as a block of text.
putdocx textblock end

Add file intro.txt to the document as a new paragraph
putdocx textfile intro.txt

As above, but append intro.txt to the active paragraph
putdocx textfile intro.txt, append

67

68 putdocx paragraph — Add text or images to an Office Open XML (.docx) file

Syntax

Add paragraph to document

putdocx paragraph [, paragraph_options]

Add text to paragraph

putdocx text (exp) [, text_options]

Add a paragraph with a block of text

putdocx textblock begin

Append a block of text to the active paragraph

putdocx textblock append

End the block of text initiated with putdocx textblock begin or putdocx textblock append

putdocx textblock end

Add page number to paragraph (to be added to header or footer)

putdocx pagenumber [, text_options totalpages]

Add a textfile as a block of preformatted text

putdocx textfile textfile [, append stopat (string[, stopatopt])}

Add image to paragraph
putdocx image filename [, image_oplions]

filename is the full path to the image file or the relative path from the current working directory.

paragraph_options Description
style (pstyle) set paragraph text with specific style
font (fspec) set font, font size, and font color
halign (hvalue) set paragraph alignment
valign (vvalue) set vertical alignment of characters on each line
indent (indenttype #[Lmit]) set paragraph indentation
spacing(position, #[Lmit]) set spacing between lines of text
shading (sspec) set background color, foreground color, and
fill pattern
toheader (hname) add paragraph content to the header hname

tofooter (fname) add paragraph content to the footer fname

putdocx paragraph — Add text or images to an Office Open XML (.docx) file

69

text_options

Description

*nformat (% fint)
font (fspec)
bold
italic
script(sub | super)
strikeout
underline[(upattern)]

shading (sspec)

linebreak| (#) |

allcaps
*smallcaps

specify numeric format for text

set font, font size, and font color

format text as bold

format text as italic

set subscript or superscript formatting of text
strike out text

underline text using specified pattern

set background color, foreground color, and fill
pattern

add line breaks after text

format text as all caps

format text as small caps

*Cannot be specified with putdocx pagenumber.

image_options

Description

width (#[Lmil]) set image width

height (#[unit]) set image height
linebreak[# } add line breaks after image
link insert link to image file
fspec is

fontname [, size [, color]]

fontname may be any valid font installed on the user’s computer. If fontname includes spaces,
then it must be enclosed in double quotes.

size is a numeric value that represents font size measured in points. The default is 11.

color sets the text color.

sspec is

bgcolor [, fgcolor [, fpattern]]

bgcolor specifies the background color.

fgcolor specifies the foreground color. The default foreground color is black.

Jpattern specifies the fill pattern. The most common fill patterns are solid for a solid color
(determined by fgcolor), pct25 for 25% gray scale, pct50 for 50% gray scale, and pct75 for
75% gray scale. A complete list of fill patterns is shown in Shading patterns of [RPT] Appendix

for putdocx.

color, bgcolor, and fgcolor may be one of the colors listed in Colors of [RPT] Appendix for putdocx;
a valid RGB value in the form ### ### ###, for example, 171 248 103; or a valid RRGGBB hex
value in the form ######, for example, ABF867.

70 putdocx paragraph — Add text or images to an Office Open XML (.docx) file

upattern may be any of the patterns listed in Underline patterns of [RPT] Appendix for putdocx. The
most common underline patterns are double, dash, and none.

unit may be in (inch), pt (point), cm (centimeter), or twip (twentieth of a point). An inch is equivalent
to 72 points, 2.54 centimeters, or 1440 twips. The default is in.

Options

Options are presented under the following headings:

Options for putdocx paragraph
Options for putdocx text
Options for putdocx pagenumber
Options for putdocx textfile
Options for putdocx image

Options for putdocx paragraph

style(pstyle) specifies that the text in the paragraph be formatted with style pstyle. Common values
for pstyle are Title, Subtitle, and Headingl. See the complete list of paragraph styles in
Paragraph styles of [RPT] Appendix for putdocx.

font (fontname [, size [s color] }) sets the font, font size, and font color for the text within the
paragraph. The font size and font color may be specified individually without specifying fontname.
Use font ("", size) to specify font size only. Use font("", "", color) to specify font color
only. For both cases, the default font will be used.

Specifying font () with putdocx paragraph overrides font properties specified with putdocx
begin.

halign(hvalue) sets the horizontal alignment of the text within the paragraph. hvalue may be left,
right, center, both, or distribute. distribute and both justify text between the left and
right margins equally, but distribute also changes the spacing between words and characters.
The default is halign(left).

valign(vvalue) sets the vertical alignment of the characters on each line when the paragraph contains
characters of varying size. vvalue may be auto, baseline, bottom, center, or top. The default
is valign(baseline).

indent (indenttype,, #[unit]) specifies that the paragraph be indented by # units. indenttype may
be left, right, hanging, or para. left and right indent # units from the left or the right,
respectively. hanging uses hanging indentation and indents lines after the first line by # inches
unless another unit is specified. para uses standard paragraph indentation and indents the first
line by # inches unless another unit is specified. This option may be specified multiple times in
a single command to accommodate different indentation settings. If both indent (hanging) and
indent (para) are specified, only indent (hanging) is used.

spacing(position, # [um’t}) sets the spacing between lines of text. position may be before, after,
or line. before specifies the space before the first line of the current paragraph, after specifies
the space after the last line of the current paragraph, and line specifies the space between lines
within the current paragraph. This option may be specified multiple times in a single command to
accommodate different spacing settings.

shading(bgcolor [, fgcolor [, fpattem] }) sets the background color, foreground color, and fill
pattern for the paragraph.

putdocx paragraph — Add text or images to an Office Open XML (.docx) file 71

toheader (hname) specifies that the paragraph be added to the header hname. The paragraph will
not be added to the body of the document.

tofooter (fname) specifies that the paragraph be added to the footer fname. The paragraph will not
be added to the body of the document.

Options for putdocx text
nformat (7 fmt) specifies the numeric format of the text when the content of the new text appended
to the paragraph is a numeric value. This setting has no effect when the content is a string.

font (fontname [, size [, color]]) sets the font, font size, and font color for the new text within
the active paragraph. The font size and font color may be specified individually without specifying
fontname. Use font ("", size) to specify the font size only. Use font ("", "", color) to specify
the font color only. For both cases, the default font will be used.

Specifying font () with putdocx text overrides all other font settings, including those specified
with putdocx begin and putdocx paragraph.

bold specifies that the new text in the active paragraph be formatted as bold.
italic specifies that the new text in the active paragraph be formatted as italic.

script(sub |super) changes the script style of the new text. script(sub) makes the text a
subscript. script (super) makes the text a superscript.

strikeout specifies that the new text in the active paragraph have a strikeout mark.

underline[(upattern)] specifies that the new text in the active paragraph be underlined and
optionally specifies the format of the line. By default, a single underline is used.

shading(bgcolor [, fegcolor [, _ﬁ)altem] }) sets the background color, foreground color, and fill
pattern for the active paragraph. Specifying shading() with putdocx text overrides shading
specifications from putdocx paragraph.

linebreak[# } specifies that one or # line breaks be added after the new text.
allcaps specifies that all letters of the new text in the active paragraph be capitalized.

smallcaps specifies that all letters of the new text in the active paragraph be capitalized, with larger
capitals for uppercase letters and smaller capitals for lowercase letters.

Options for putdocx pagenumber

font (fontname [, size [, calar]]) sets the font, font size, and font color for the page numbers. The
font size and font color may be specified individually without specifying fontname. Use font ("",
size) to specify the font size only. Use font("", "", color) to specify the font color only. For
both cases, the default font will be used.

Specifying font () with putdocx pagenumber overrides all other font settings, including those
specified with putdocx begin and putdocx paragraph.

bold specifies that the page numbers be formatted as bold.
italic specifies that the page numbers be formatted as italic.

script (sub | super) changes the script style of the page numbers. script(sub) makes the page
numbers subscripts. script (super) makes the page numbers superscripts.

strikeout specifies that the page numbers have a strikeout mark.

72 putdocx paragraph — Add text or images to an Office Open XML (.docx) file

underline[(upattern)] specifies that the page numbers be underlined and optionally specifies the
format of the line. By default, a single underline is used.

shading(bgcolor [, fgcolor [, fpartern] }) sets the background color, foreground color, and fill
pattern for the page numbers. Specifying shading() with putdocx pagenumber overrides shading
specifications from putdocx paragraph.

linebreak[# } specifies that one or # line breaks be added after the page numbers.

allcaps specifies that the page numbers be capitalized; this only applies with the page number
formats lower_letter, lower_roman, cardinal_text, and ordinal_text.

totalpages specifies that the total number of pages be displayed, instead of the current number of
the page.

Options for putdocx textfile

append specifies that the text file be appended to the current paragraph, rather than being added as
a new paragraph.

stopat (string[s stopatopt]) specifies that only a portion of the text file be included, using the
specified string as the end point.

stopatopt must be one of begin, end, or contain. The default is begin, which matches the
string at the beginning of the line. contain matches the string inside the line. end matches the
string at the end of the line. If the line matches the string, the rest of the text file, including the
line, will not be included in the document.

Options for putdocx image

width(#[unit]) sets the width of the image. If the width is larger than the body width of the
document, then the body width is used. If width() is not specified, then the default size is used;
the default is determined by the image information and the body width of the document.

height (#[uniz]) sets the height of the image. If height () is not specified, then the height of the
image is determined by the width and the aspect ratio of the image.

linebreak[# } specifies that one or # line breaks be added after the new image.

link specifies that a link to the image filename be inserted into the document. If the image is linked,
then the referenced file must be present so that the document can display the image.

Remarks and examples

Text, headers, footers, page numbers, and images are added to a .docx file via paragraphs. You
first create a paragraph and then append text and other content to it. A paragraph can be formatted
as a whole, and portions of the text within a paragraph can also be formatted individually.

To a paragraph, you can add valid Stata expressions, including strings, algebraic expressions, and
direct references to stored results using putdocx text. For lengthier additions, you can add blocks
of text using putdocx textblock. You can also insert preformatted text files in your .docx file with
putdocx textfile. With putdocx image, you can add images such as Stata graphs to a paragraph.

putdocx paragraph does not only add standard paragraphs to a document; with the variety of
formatting options available to customize paragraphs, you can create a document complete with a
title, subtitle, headings, and headers and footers.

putdocx paragraph — Add text or images to an Office Open XML (.docx) file 73

Remarks are presented under the following headings:

Adding a paragraph

Formatting text

Working with blocks of text
Adding an image to the document
Inserting text files in the document

Adding a paragraph

With each putdocx paragraph command we execute, we have the opportunity to format all the
text within the paragraph. For instance, we can specify font properties such as size and color along
with alignment, indentation, and line spacing.

Specifying putdocx paragraph without any options will create an active paragraph in the body
of the document. To instead add the paragraph content to a header or footer, use the toheader () or
tofooter () option.

> Example 1: Add a title to the document

Suppose we want to create a report on some of the contributing factors to low birthweight and
save it in a file called bweight.docx. We use the Hosmer and Lemeshow dataset.

. use https://www.stata-press.com/data/r16/1lbw
(Hosmer & Lemeshow data)

We must first create our document as described in [RPT] putdocx begin. Because we want to add
a header to our document, we specify the header () option, and we specify the font size for the
whole document.

. putdocx begin, header(bwtreport) font(, 14)

Now we create a paragraph to which we can append text or an image. Here we indicate that we
are adding a title, and then we use putdocx text to add the title itself.

. putdocx paragraph, style(Title)
. putdocx text ("Factors of low birthweight")

The paragraph will remain active until we add a new paragraph, a table, a section break, or a page
break (see [RPT] putdocx table and [RPT] putdocx pagebreak).
d

> Example 2: Define the header content

Next we define the content of our header. To do so, we use the toheader () option, which places
the contents of the paragraph in the header rather than in the body of our document. We also include
page numbers in the header:

. putdocx paragraph, toheader(bwtreport)
. putdocx text ("Analysis of birthweight: ")

. putdocx pagenumber

Now that our file is set up with a title and header, we add some text to the body of our document.
In the next example, we will add a description of our dataset. Because the active paragraph is the one
with the header content, we need to start a new paragraph that does not use the toheader () option.

. putdocx paragraph

74 putdocx paragraph — Add text or images to an Office Open XML (.docx) file

putdocx paragraph with no options will use your computer’s default font and the 14-point size
that we requested with our previous putdocx begin command. See Options for putdocx paragraph
for paragraph formatting options that can be specified to override defaults and settings specified in
putdocx begin.

d

Formatting text

In each putdocx text command, we can specify any valid Stata expression (see [U] 13 Functions
and expressions) including, but not limited to, a string of plain text. The expression can be formatted
using the Options for putdocx text, which would override the settings specified in putdocx paragraph
and putdocx begin.

> Example 3: Format text individually

Suppose we want to write a description of 1lbw.dta to bweight.docx, including the number
of women in the dataset and the average birthweight in grams (bwt) for their infants. We use the
summarize command to get these descriptive statistics for the bwt variable.

. summarize bwt

Variable | Obs Mean Std. Dev. Min Max

bwt | 189 2944 .286 729.016 709 4990

We can use the results from summarize in the text we write. To see the available returned results,
we type return list. (See [P] return for more about stored results from Stata commands.)

. return list

scalars:
r(sum) = 556470
r(max) = 4990
r(min) = 709
r(sd) = 729.0160177275554
r(Var) = 531464.3541033434
r(mean) = 2944.285714285714
r(sum_w) = 189
r(N) = 189

We see that r(N) stores the number of observations and r(mean) stores the average birthweight.
Below, we create a paragraph containing this information and save the changes to our document.

. putdocx text (" We analyze a dataset with ‘r(N)’ women,")

. putdocx text (" and find an average birthweight of ")

. putdocx text (r(mean)), nformat(%5.2f)

. putdocx text (" grams.")

. putdocx save bweight

Above, we formatted the mean birthweight to report only two digits after the decimal. The
bweight.docx file now looks like this:

putdocx paragraph — Add text or images to an Office Open XML (.docx) file 75

bueight.docx [Compatibility Mode] - Word m - u}

Home Insert Design Llayout References Mailings Review View Help Acobat Q' Tell me what youwant to do £ Share

PR S S B S S S S S R P S R BRI RPN I

Analysis of birthweight: 1

Factors of low birthweight

We analyze a dataset with 189 women, and find an average birthweight of
2944.29 grams.

1 >
Pagelof1 13words [j2 English (United States) E B - 1 + 120%

Working with blocks of text

While putdocx text is great for customizing small bits of text, it is more efficient to use the
putdocx textblock commands when adding big blocks of text to your document. To add a paragraph
with a block of text to your document, simply enclose your text between the putdocx textblock
commands as follows:

putdocx textblock begin
. block of text to add
putdocx textblock end

To instead append a block of text to the active paragraph, use putdocx textblock append.

For example, continuing with the Hosmer and Lemeshow dataset, suppose we wanted to add more
details about the data. We might include a text block by typing the following:

putdocx textblock begin

We use data presented in Hosmer, Lemeshow, and Sturdivant (2013, 24).

These data record women’s demographics, such as age and race, and their medical
history, including whether they have a history of hypertension.

putdocx textblock end

Inserting a block of text does not limit us to using the same format throughout the block. Before
we include this text block in our document, we want to add a bit of text that is formatted differently
from the rest of the text block.

We can use the <<dd_docx_display>> dynamic tag within our text block to include Stata results
and modify the text style. This dynamic tag will execute Stata’s display command and then replace
the tag with its output. We can format the output by specifying any of the text options that are also
available with putdocx text. The entire <<dd_docx_display text_option : display_directive>>
tag must be contained on one line—there cannot be a line break within the tag. See [RPT] Dynamic
tags for more information on the <<dd_docx_display>> dynamic tag.

> Example 4: Formatting text within a block

Let’s modify the code above to include the name of the book that presented the dataset. Because
we saved our document to view it, we must first create a new active document. Then we add the
underlined book title within our text block as follows:

putdocx begin, font(, 14)
putdocx textblock begin

76 putdocx paragraph — Add text or images to an Office Open XML (.docx) file

We use data presented in the book

<<dd_docx_display underline: "Applied Logistic Regression, 3rd Edition">>

by Hosmer, Lemeshow, and Sturdivant. These data record women’s demographics, such
as age and race, and their medical history, including whether they have

a history of hypertension.

putdocx textblock end

In addition to formatting text, we can use the <<dd_docx_display>> dynamic tag to include Stata
results. For example, we briefly mention how many women in this dataset smoked while pregnant and
how many of them gave birth to an infant that weighed less than 2,500 grams. To add this content,
we first store some results in local macros and then summarize the data.

. count if smoke==

74
. local smoke = ‘r(N)’
. count if low==1
59
. local 1lbw = ‘r(N)’
. summarize
Variable Obs Mean Std. Dev. Min Max
id 189 121.0794 63.30363 4 226
low 189 .3121693 .4646093 0 1
age 189 23.2381 5.298678 14 45
1wt 189 129.8201 30.57515 80 250
race 189 1.846561 .9183422 1 3
smoke 189 .3915344 .4893898 0 1
ptl 189 .1957672 .4933419 0 3
ht 189 .0634921 .2444936 0 1
ui 189 .1481481 .3561903 0 1
ftv 189 . 7936508 1.059286 0 6
bwt 189 2944 .286 729.016 709 4990

We can now reference these macros and any stored results in our block of text, as follows:

putdocx textblock begin

Out of the <<dd_docx_display: ‘r(N)’>> women in this dataset,

<<dd_docx_display shading(yellow): ‘smoke’>> smoked during their pregnancy, and
<<dd_docx_display : %4.2f ‘1bw’/‘r(N)’>> 7, gave birth to an infant that weighed
less than 2,500 grams.

putdocx textblock end

Adding an image to the document

We can add any existing .png, .jpg, .emf, and .tif image files to a .docx file with putdocx
image. For example, you could include a company logo. We can also add graphs from Stata output.
Because Stata graphs use the .gph extension, we must first use graph export to convert the Stata
graph to one of the supported image formats; see [G-2] graph export.

By default, images are embedded in the file. If the image is embedded, it becomes a part of the
document and has no further relationship with the original image on the disk. We can instead link
the image by specifying the 1ink option. Using linked images means that if the saved image file is
updated, then the linked image in the document will reflect the change.

putdocx paragraph — Add text or images to an Office Open XML (.docx) file 77

If we add an image after text and want the paragraph that contains the image to have the same
format as the active paragraph, we insert the image with no additional step. However, when we
want to change the formatting or if there is no active paragraph, we must create one using putdocx
paragraph. Note that we do not need to declare a new paragraph to insert an image into the cell of
a table; see example 7 in [RPT] putdocx table.

> Example 5: Export a Stata graph

Another probable factor of low birthweight is the mother’s history of premature labor. We have a
variable (ptl) that records the number of times a mother prematurely went into labor. Let’s add a
graph showing the mean birthweight separately for mothers who never went into premature labor and
those who went into premature labor once, twice, and three times. We use the graph bar command
followed by graph export to create a .png file.

. graph bar bwt, over(ptl)

3,000 4,000
1 1

mean of bwt
2,000

1,000

. graph export ptl.png
(file ptl.png written in PNG format)

Now we use putdocx image to add the .png file to a document. There is currently no active
paragraph, so we declare a new paragraph and specify the halign() option to center our image; by
default, paragraphs are left-aligned.

. putdocx paragraph, halign(center)
. putdocx image ptl.png
. putdocx save bweight, append

We append our active document, which includes the two text blocks along with this graph, to the
existing content of bweight.docx. Here is what the file contains:

78 putdocx paragraph — Add text or images to an Office Open XML (.docx) file

bweight.docx [Compatibility Mode] - Word

File Home Insert Design layout References Mailings Review View Help Acrobat @ Tell mewhatyou want to do £ Share

Analysis of birthweight: 1

Factors of low birthweight

We analyze a dataset with 189 women, and find an average birthweight of
2944.29 grams.

We use data presented in the book Applied Logistic Regression, 3rd Edition by
Hosmer, Lemeshow, and Sturdivant. These data record women's demographics,
such as age and race, and their medical history,including whether they have a
history of hypertension.

Out of the 189 women in this dataset, 74 smoked during their pregnancy, and
0.31 % gave birth to an infant that weighed less than 2,500 grams.

4,000
|

3,000
1

mean of bwt
2,000
|

1,000

Pagelof1 84words [[¥ English (United States) B B - 1 + 120%

Inserting text files in the document

There may be instances where you are building a document in pieces or where you are collaborating
with others to complete a project. For these situations, it may be useful to include previously created
text files in your .docx file with putdocx textfile. You can even specify the portion of the text
file that you want to include in your .docx file.

For example, let’s say our classmate wrote a section about the discovery of the effects of
smoking during pregnancy. We want to incorporate this in a birthweight report we have saved as
bweight2.docx. However, the text file he sent also includes a section on hypertension, which we
do not want to include. To add his text file to our document, excluding the section on hypertension,
we type the following in Stata:

putdocx paragraph — Add text or images to an Office Open XML (.docx) file 79

putdocx begin
putdocx textfile smoke.txt, stopat(hypertension, contain)
putdocx save bweight2, append

The contain suboption simply tells Stata that whenever it comes across a line in the text file that
contains the word “hypertension”, it should exclude that line and anything that follows.

If we had just typed

putdocx begin
putdocx textfile smoke.txt, stopat(hypertension)
putdocx save bweight2, append

Stata would have searched for the line in the text file that began with “hypertension” and excluded
that line and anything that follows. Because we do not know whether hypertension is found at the
beginning or end of the line in the text file, we specified contain.

Also see
[RPT] putdocx intro — Introduction to generating Office Open XML (.docx) files
[RPT] putdocx begin — Create an Office Open XML (.docx) file
[RPT] putdocx pagebreak — Add breaks to an Office Open XML (.docx) file
[RPT] putdocx table — Add tables to an Office Open XML (.docx) file
[RPT] Appendix for putdocx — Appendix for putdocx entries

Title

putdocx table — Add tables to an Office Open XML (.docx) file

Description Quick start Syntax Options
Remarks and examples Stored results Reference Also see

Description

putdocx table creates and modifies tables in the active .docx file. Tables may be created from
several output types, including the data in memory, matrices, and estimation results.

putdocx describe describes a table within the active .docx file.

Quick start

Add a table named tbl1 with three rows and four columns to the document
putdocx table tbll = (3,4)

Set the content of the cell on the first row and first column of tbl1 to be “My graph” and align the
text to the right

putdocx table tbl1(1,1) = ("My graph"), halign(right)

Insert the image in mygraph.png into the second cell in the first column
putdocx table tbl1(2,1) = image(mygraph.png)

Format the contents in columns two through four with two decimal places
putdocx table tbl1(.,2/4), nformat(%5.2f)

Describe the contents of table tbl1
putdocx describe tbll

Add a table named tb12 with regression results after regress
putdocx table tbl2 = etable

As above, and add a title
putdocx table tbl2 = etable, title("First regression")

Add a table of all returned scalars stored after summarize
putdocx table tbl3 = rscalars

Add a table of the data stored in variables varl and var2 from the dataset in memory
putdocx table tbl4 = data(varl var2)

Add a table with the contents of matrix matrix1, including the row and column names of the matrix

putdocx table tbl5 = matrix(matrixl), rownames colnames

Add a table with no borders to the header report1

putdocx begin, header(reportl)
putdocx table tbl6é = (1,2), border(all,nil) toheader(reportl)

80

putdocx table — Add tables to an Office Open XML (.docx) file 81

Syntax

Add table to document

putdocx table

putdocx table

tablename = (nrows, ncols) [, table_opzions]

tablename = data(varlist) [lf] [in} [, varnames obsno

table_options]

putdocx table

tablename = matrix(matname) [, nformat (%, fint) rownames colnames

table_options]

putdocx table
putdocx table

putdocx table

Add content to cell

putdocx table
putdocx table

putdocx table

Alter table layout
putdocx table

putdocx table

tablename = mata(matname) [, nformat (7 fimt) lable_options]
tablename = etable[(# #o ... #n)] [, table_options]

tablename = returnset [, table_opzions]

tablename (i, j) = (exp) [, cell_options pagenumber totalpages]
tablename (i, j) = image (filename) [, image_options cell_options]

tablename (i, j) = table(mem_tablename) [, cell_z)ptions]

tablename (i, .) , row_col_options

tablename(. , j) , row_col_options

Customize format of cells or table

putdocx table
putdocx table
putdocx table
putdocx table

putdocx table

Describe table

tablename (i, j) , cell_options

tablename (numlist; , .) , cell_fmt_options
tablename (. , numlist;) , cell_fmt_options
tablename (numlist; , numlist;) , cell_fmt_options

tablename(., .), cell_fmt_options

putdocx describe tablename

82 putdocx table — Add tables to an Office Open XML (.docx) file

tablename specifies the name of a table. The name must be a valid name according to Stata’s naming
conventions; see [U] 11.3 Naming conventions.

table_options Description

memtable keep table in memory rather than add it to document
width (#[unit| %)) set table width

halign (hvalue) set table horizontal alignment

indent (#[Lll’lil]) set table indentation

layout (layouttype) adjust column width

cellmargin(cmarg, #[unit]) set margins for each table cell

cellspacing (#[unit]) set spacing between adjacent cells and the edges of the table
border (bspec) set pattern, color, and width for border

headerrow (#) set number of the top rows that constitute the table header
title(string) add a title to the table

note (string) add notes to the table

toheader (hname) add the table to the header hname

tofooter (fname) add the table to the footer fname

cell_options Description

append append objects to current content of cell

rowspan (#) merge cells vertically

colspan(#) merge cells horizontally

span(#1, #2) merge cells both horizontally and vertically
1inebreak[# } add line breaks into the cell

cell_fmt_options options that control the look of cell contents
image_options Description

width (#[unit]) set image width

height (#[uniz]) set image height

1inebreak[# } add line breaks after image

link insert link to image file

row_col_options Description

nosplit prevent row from breaking across pages

addrows (# | , before |after|) add # rows in specified location
addcols (# [, before | after}) add # columns in specified location

drop drop specified row or column
cell_fmt_options options that control the look of cell contents

putdocx table — Add tables to an Office Open XML (.docx) file 83

cell_fmt_options Description
halign (hvalue) set horizontal alignment
valign (vvalue) set vertical alignment
border (bspec) set pattern, color, and width for border
shading (sspec) set background color, foreground color, and fill pattern
nformat (7, fint) specify numeric format for cell text
font (fspec) set font, font size, and font color
bold format text as bold
italic format text as italic

*script (sub | super) set subscript or superscript formatting of text
strikeout strikeout text
underline[(upattern)] underline text using specified pattern
allcaps format text as all caps
smallcaps format text as small caps

*May only be specified when formatting a single cell.

unit may be in (inch), pt (point), cm (centimeter), or twip (twentieth of a point). An inch is equivalent
to 72 points, 2.54 centimeters, or 1440 twips. The default is in.

bspec is

bordername [, bpattern [, bcolor [, bwidth] H

bordername specifies the location of the border.

bpattern is a keyword specifying the look of the border. The most common patterns are single,
dashed, dotted, and double. The default is single. For a complete list of border patterns,
see Border patterns of [RPT] Appendix for putdocx. To remove an existing border, specify nil
as the bpattern.

bcolor specifies the border color.

bwidth is defined as #[unit] and specifies the border width. The default border width is
0.5 points. If # is specified without the optional unit, inches is assumed. bwidth may be ignored
if you specify a width larger than that allowed by the program used to view the .docx file.
We suggest using 12 points or less or an equivalent specification.

sspec is

bgcolor [, Jfgcolor [, fpattern]]

bgcolor specifies the background color.

fecolor specifies the foreground color. The default foreground color is black.

Jfpattern specifies the fill pattern. The most common fill patterns are solid for a solid color
(determined by fgcolor), pct25 for 25% gray scale, pct50 for 50% gray scale, and pct75 for

75% gray scale. A complete list of fill patterns is shown in Shading patterns of [RPT] Appendix
for putdocx.

84 putdocx table — Add tables to an Office Open XML (.docx) file

fspec is
fontname [, size [, color]]

fontname may be any valid font installed on the user’s computer. If fontname includes spaces,
then it must be enclosed in double quotes.

size is a numeric value that represents font size measured in points. The default is 11.

color sets the text color.

beolor, bgcolor, fgcolor, and color may be one of the colors listed in Colors of [RPT] Appendix
for putdocx; a valid RGB value in the form ### ### ###, for example, 171 248 103; or a valid
RRGGBB hex value in the form ######, for example, ABF867.

Output types for tables

The following output types are supported when creating a new table using putdocx table fablename:

(nrows, ncols) creates an empty table with nrows rows and ncols columns. Microsoft Word allows
a maximum of 63 columns in a table.

data(varlist) adds the current Stata dataset in memory as a table to the active document. varlist
contains a list of the variable names from the current dataset in memory.

matrix (matname) adds a matrix called matname as a table to the active document.
mata (matname) adds a Mata matrix called matname as a table to the active document.

etable[(#1 #o ... #y)] adds an automatically generated table to the active document. The table
may be derived from the coefficient table of the last estimation command, from the table of
margins after the last margins command, or from the table of results from one or more models
displayed by estimates table.

If the estimation command outputs 1 > 1 coefficient tables, the default is to add all tables and
assign the corresponding table names tablenamel, tablename2, ..., tablename,. To specify
which tables to add, supply the optional numlist to etable. For example, to add only the
first and third tables from the estimation output, specify etable(1 3). A few estimation
commands do not support the etable output type. See Unsupported estimation commands of
[RPT] Appendix for putdocx for a list of estimation commands that have displayed output that
is not supported by putdocx.

returnset exports a group of Stata return values to a table in the active document. It is intended
primarily for use by programmers and by those who want to do further processing of their
exported results in the active document. returnset may be one of the following:

returnset Description

escalars all ereturned scalars

rscalars all returned scalars

emacros all ereturned macros

rmacros all returned macros

ematrices all ereturned matrices

rmatrices all returned matrices

ex all ereturned scalars, macros, and matrices

T* all returned scalars, macros, and matrices

putdocx table — Add tables to an Office Open XML (.docx) file 85

The following output types are supported when adding content to an existing table using putdocx
table tablename(i, j):

(exp) writes a valid Stata expression to a cell; see [U] 13 Functions and expressions.

image (filename) adds a portable network graphics (. png), JPEG (. jpg), Windows metafile (. wmf),
device-independent bitmap (.dib), enhanced metafile (.emf), or bitmap (.bmp) file to the table
cell. If filename contains spaces, it must be enclosed in double quotes.

table (mem—_tablename) adds a previously created table, identified by mem_tablename, to the
table cell.

The following combinations of tablename(numlist; , numlist;) (see [U] 11.1.8 numlist for valid
specifications) can be used to format a cell or range of cells in an existing table:

tablename (i, j) specifies the cell on the ith row and jth column.

tablename (i, .) and tablename (numlist;, .) specify all cells on the ith row or on the rows
identified by numlist;.

tablename (. , j) and tablename (., numlist;) specify all cells in the jth column or in the columns
identified by numlist;.

tablename (., .) specifies the whole table.

Options

Options are presented under the following headings:

table_options
cell_options
row—col_options
cell_fmt_options
image_options

table_options

memtable specifies that the table be created and held in memory instead of being added to the active
document. By default, the table is added to the document immediately after it is created. This
option is useful if the table is intended to be added to a cell of another table or to be used multiple
times later.

width (#[unit | %]) sets the table width. # may be an absolute width or a percentage of the default
table width, which is determined by the page width of the document. For example, width (50%)
sets the table width to 50% of the default table width. The default is width(100%).

halign(hvalue) sets the horizontal alignment of the table within the page. hvalue may be left,
right, or center. The default is halign(left).

indent (#[unit]) specifies the table indentation from the left margin of the current document.

layout (layouttype) adjusts the column width of the table. layouttype may be fixed, autofitwindow,
or autofitcontents. fixed means the width is the same for all columns in the table. When
autofitwindow is specified, the column width automatically resizes to fit the window. When
autofitcontents is specified, the table width is determined by the overall table layout al-
gorithm, which automatically resizes the column width to fit the contents. The default is
layout (autofitwindow).

86 putdocx table — Add tables to an Office Open XML (.docx) file

cellmargin(cmarg, #[um't]) sets the cell margins for table cells. cmarg may be top, bottom,
left, or right. This option may be specified multiple times in a single command to accommodate
different margin settings.

cellspacing (#[uniz]) sets the spacing between adjacent cells and the edges of the table.

border (bordername [, bpattern [, bcolor [, bwidth]] }) adds a single border in the location
specified by bordername, which may be start, end, top, bottom, insideH (inside horizontal
borders), insideV (inside vertical borders), or all. Optionally, you may change the pattern, color,
and width for the border by specifying bpattern, bcolor, and bwidth.

This option may be specified multiple times in a single command to accommodate different border
settings. If multiple border () options are specified, they are applied in the order specified from
left to right.

headerrow (#) sets the top # rows to be repeated as header rows at the top of each page on which
the table is displayed. This setting has a visible effect only when the table crosses multiple pages.

varnames specifies that the variable names be included as the first row in the table when the table
is created using the dataset in memory. By default, only the data values are added to the table.

obsno specifies that the observation numbers be included as the first column in the table when the
table is created using the dataset in memory. By default, only the data values are added to the
table.

nformat (% fint) specifies the numeric format to be applied to the source values when creating the
table from a Stata or Mata matrix. The default is nformat (%12.0g).

rownames specifies that the row names of the Stata matrix be included as the first column in the
table. By default, only the matrix values are added to the table.

colnames specifies that the column names of the Stata matrix be included as the first row in the
table. By default, only the matrix values are added to the table.

title(string) inserts a row without borders above the current table. The added row spans all the
columns of the table and contains string as text. The added row shifts all other table contents down
by one row. You should account for this when referencing table cells in subsequent commands.

note (string) inserts a row without borders to the bottom of the table. The added row spans all the
columns of the table. This option may be specified multiple times in a single command to add
notes on new lines within the same cell. Note text is inserted in the order it was specified from
left to right.

toheader (hname) specifies that the table be added to the header hname. The table will not be added
to the body of the document.

tofooter (fname) specifies that the table be added to the footer fname. The table will not be added
to the body of the document.

cell_options
append specifies that the new content for the cell be appended to the current content of the cell. If
append is not specified, then the current content of the cell is replaced by the new content.

rowspan (#) sets the specified cell to span vertically # cells downward. If the span exceeds the total
number of rows in the table, the span stops at the last row.

colspan(#) sets the specified cell to span horizontally # cells to the right. If the span exceeds the
total number of columns in the table, the span stops at the last column.

putdocx table — Add tables to an Office Open XML (.docx) file 87

span(#;, #2) sets the specified cell to span #; cells downward and span # cells to the right.

linebreak[# } specifies that one or # line breaks be added after the text, the image, or the table
within the cell.

pagenumber specifies that the current page number be appended to the end of the new content for
the cell. This option only applies when adding an expression to a cell. pagenumber applies only
to tables being added to a header or footer and cannot be combined with totalpages.

totalpages specifies that the number of total pages be appended to the end of the new content for
the cell. This option only applies when adding an expression to a cell. totalpages applies only
to tables being added to a header or footer and cannot be combined with pagenumber.

row_col_options

nosplit specifies that row ¢ not split across pages. When a table row is displayed, a page break
may fall within the contents of a cell on the row, causing the contents of that cell to be displayed
across two pages. nosplit prevents this behavior. If the entire row cannot fit on the current page,
the row will be moved to the start of the next page.

addrows (# [, before \ after]) adds # rows to the current table before or after row ¢. If before
is specified, the rows are added before the specified row. By default, rows are added after the
specified row.

addcols (# [, before | after]) adds # columns to the current table to the right or the left of
column j. If before is specified, the columns are added to the left of the specified column. By
default, the columns are added after, or to the right of, the specified column.

drop deletes row 7 or column j from the table.

cell_fmt_options

halign(hvalue) sets the horizontal alignment of the specified cell or of all cells in the specified row,
column, or range. hvalue may be left, right, or center. The default is halign(left).

valign(vvalue) sets the vertical alignment of the specified cell or of all cells in the specified row,
column, or range. vvalue may be top, bottom, or center. The default is valign(top).

border (bordername [, bpattern [, bcolor [, bwidlﬂ]]) adds a single border to the specified
cell or to all cells in the specified row, column, or range in the given location. bordername may
be start, end, top, bottom, or all. Optionally, you may change the pattern, color, and width
for the border by specifying bpattern, bcolor, and bwidth.

This option may be specified multiple times in a single command to accommodate different border
settings. If multiple border () options are specified, they are applied in the order specified from
left to right.

shading(bgcolor [, fgcolor [, fpattern] }) sets the background color, foreground color, and fill
pattern for the specified cell or for all cells in the specified row, column, or range.

nformat (7 fimt) applies the Stata numeric format % fint to the text within the specified cell or within
all cells in the specified row, column, or range. This setting only applies when the content of the
cell is a numeric value.

font (fontname [, Size [s color}]) sets the font, font size, and font color for the current text within
the specified cell or within all cells in the specified row, column, or range. The font size and font
color may be specified individually without specifying fontname. Use font ("", size) to specify

88 putdocx table — Add tables to an Office Open XML (.docx) file

font size only. Use font("", "", color) to specify font color only. For both cases, the default
font will be used.

bold applies bold formatting to the current text within the specified cell or within all cells in the
specified row, column, or range.

italic applies italic formatting to the current text within the specified cell or within all cells in the
specified row, column, or range.

script (sub | super) changes the script style of the current text. script(sub) makes the text a
subscript. script (super) makes the text a superscript. script () may only be specified when
formatting a single cell.

strikeout adds a strikeout mark to the current text within the specified cell or within all cells in
the specified row, column, or range.

underline adds an underline to the current text within the specified cell or within all cells in the
specified row, column, or range. By default, a single underline is used. underline (upattern)
can be used to change the format of the line, where upattern may be any of the patterns listed
in Underline patterns of [RPT] Appendix for putdocx. The most common patterns are double,
dash, and none.

allcaps uses capital letters for all letters of the current text within the specified cell or within all
cells in the specified row, column, or range.

smallcaps uses capital letters for all letters of the current text within the specified cell or within all
cells in the specified row, column, or range. smallcaps uses larger capitals for uppercase letters
and smaller capitals for lowercase letters.

image_options

width (# [um’t]) sets the width of the image. If the width is larger than the width of the cell, then the
width is used. If width() is not specified, then the default size is used; the default is determined
by the image information and the width of the cell.

height (#[uniz]) sets the height of the image. If height () is not specified, then the height of the
image is determined by the width and the aspect ratio of the image.

linebreak[# } specifies that one or # line breaks be added after the new image.

link specifies that a link to the image filename be inserted into the document. If the image is linked,
then the referenced file must be present so that the document can display the image.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Creating basic tables
Exporting summary statistics
Exporting estimation results

Creating advanced tables

Customizing headers and footers with tables

putdocx table — Add tables to an Office Open XML (.docx) file 89

Introduction

The suite of putdocx commands makes it easy to export summary statistics, estimation results,
data, and images in neatly formatted tables. There are different output types available to export a
whole coefficient table, matrix, or dataset in a single step. Alternatively, you can create a table by
specifying the dimensions and then gradually inserting contents, such as text, images, and stored
results. When you create a table, you specify a name for it, which allows you to make further
modifications to its contents. You can customize each cell or apply specific formatting to a range of
cells with row and column indexes. The variety of formatting options allows you to export a table
complete with a title, notes, and a repeating header for tables that span multiple pages.

In the following sections, we demonstrate how to create a variety of tables, ranging from small
tables without formatting