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Preface

What is assumed?

There are two ways of learning about structural equation modeling (SEM). The one I
have chosen for this book is best described by an old advertising tag for a sport shoe
company: “Just do it”. My approach could be called kinetic learning because it is based
on the tactile experience of learning about SEM by using Stata to estimate and interpret
models. This means you should have Stata open while you read this book; otherwise, this
book might help you go to sleep if you try to read it without simultaneously working
through it on your computer. By contrast, if you do work through the examples in
the book by running the commands as you are reading, I hope you develop the same
excitement that I have for SEM.

The alternative approach to learning SEM is to read books that are much more
theoretical and may not even illustrate the mechanics of estimating models. These
kinds of books are important, and reading them will enrich your understanding of SEM.
This book is not meant to replace those books, but simply to get you started. My
intent is for you to work your way through this book sequentially, but I recognize that
some readers will want to skip around. I am hopeful that after you have been through
this book once, you will want to return to specific chapters to reference techniques
covered there. To facilitate this, each chapter includes some repetition of the most
salient concepts covered in prior chapters. There is also a detailed index at the end of
the book.

What background is assumed? A person who has never used Stata will need some
help getting started. A big part of Stata’s brilliance is its simplicity, so a few minutes of
help will get you up and ready for what you need to know about Stata. If you are new
to Stata, have a friend who is familiar with the program show you the basics. If you
have read my book A Gentle Introduction to Stata (2012a), you are ahead of the game.
If you have any experience using Stata, then you are in great shape for this book. If
you are a longtime Stata user, you will find that parts of this book explain things you
already know.

To get the most out of this book, you need to have some background in statistics
with experience in multiple regression. If you know path analysis, you will find the SEM

approach to path analysis a big improvement over traditional approaches; however, the
material on path analysis has been written for someone who has had very little exposure
to path analysis. Even though the first chapter begins by covering how factor analysis
has been used traditionally, a background in factor analysis is less important than having
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xxii Preface

had some exposure to multiple regression. The first chapter shows how confirmatory
factor analysis adds capabilities to move beyond the traditional approach—you may
never want to rely on alpha and principal component factor analysis again for developing
a scale. I have covered enough about the traditional applications of factor analysis that
you will be okay if you have had little or no prior exposure to factor analysis.

What will I learn?

We will explore many of the most widely used applications of SEM. We will begin with
how to estimate a confirmatory factor analysis model—this is the measurement model
part of SEM. This chapter includes parceling as a way to handle a large number of items
for one or more of your factors. Next, we will cover path models using SEM—this is the
structural model part of SEM. This chapter also introduces nonrecursive path models.
We then put these two components together to introduce the full structural equation
model. This chapter on the full model includes a number of specialized actions, such as
equality constraints. With this foundation, we move on to a chapter on growth curves
and conclude with a chapter on multiple-group analysis.

The book has two appendixes. Appendix A shows you how to use Stata’s graphical
user interface (GUI) to draw and estimate models with Stata’s SEM Builder. It would be
very useful to begin here so that you are familiar with the SEM Builder interface. If you
have no background in SEM, you will not understand how to interpret the results you
generate in appendix A, but this is not the point. Appendix A is just there to acquaint
you with the SEM Builder that Stata introduced in version 12 and enhanced in version
13. How the interface works is the focus of appendix A. In the text, I use this GUI fairly
often, but the focus is on understanding why we are estimating models the way we do
and how we interpret and present the results. All the figures presented in this book
were created using the SEM Builder, which produces publication-quality figures—far
better than what you can draw with most other software packages that produce “near”
publication-quality figures.

Appendix B shows you how to work with summary data (means, standard deviations,
correlations) that are often reported in published works. You will be able to fit most
models with these summary statistics even if you do not have the real data. This feature
is great when you read an article and would like to explore how alternative models might
be more appropriate. Many articles include a correlation matrix along with standard
deviations and means. If these are not included, it is easier to request them from the
author than it is to request the author’s actual data.

In addition to the two main appendixes, the first two chapters each have their own
appendix that briefly describes using the SEM Builder for the models estimated in that
chapter.
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Preface xxiii

How do I use this book?

The chapters are intended to be read in the order they appear, and you should follow
along with your reading on your computer. (It does not matter whether you use a
Windows, Mac, or Unix operating system because the Stata commands and results will
be identical.) If you have no background in SEM or factor analysis, take your time
reading chapter 1. If you are comfortable with SEM and factor analysis, you should still
go over chapter 1 enough to get a feel for how Stata works with the measurement model.

Though the chapters are fairly long, they are broken up into more manageable
sections. If you are like me, once you know the commands I cover, you will have enough
on your plate that you will forget the specifics before you need to fit a particular type of
model. The sections in each chapter build on each other but are sufficiently independent
that you should find them useful as a reference. Someday you will want to estimate a
nonrecursive path model or a mediation model; you can easily find the section covering
the appropriate model and come back to it. At the same time, this book does not
attempt to compete with Stata’s own Structural Equation Modeling Reference Manual,
or [SEM]; I only cover a widely used subset of the options and postestimation commands
available in Stata’s SEM package.

What resources are available?

To facilitate the kinetic part of learning, you can download all the data used in this book
as well as the Stata programs, called do-files, that fit every model. In the Command
window, type the following:

. net from http://www.stata-press.com/data/dsemusr/

. net describe dsemusr

. net get dsemusr

When you run these three commands, you do not type the initial period and space,
called the dot prompt. A convention in all Stata documentation and output in the
Results window is to include the dot prompt as a prefix to each command, but you need
only type the command itself.

There are several varieties of Stata software, and all of these are able to run the
models described in this text. I focus on the Windows and Mac operating systems, and
I show when there are slight differences in how they work in the GUI. The Unix GUI is
very similar to the Windows GUI. The same Stata do-files run on all operating systems,
though the systems differ slightly in how the file structure is organized.

One variety of Stata is called Small Stata. This is full featured and is small only in
the sense of being limited in the number of observations (1,200) and variables (99) it
can handle. Because a few of the datasets I use have more than 1,200 observations, I
have made up smaller datasets that will work using Small Stata. You can obtain these
datasets by entering the following in the Command window:
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xxiv Preface

. net from http://www.stata-press.com/data/dsemusr/

. net describe dsemusr_small

. net get dsemusr_small

Using the Small Stata data, you will get somewhat different results for some models
in the book simply because you will be using a smaller dataset. In addition, there are
three models in chapter 4 that will not run using Small Stata.

At the end of each chapter, you will find some exercises that illustrate the material
covered in the chapter. It is important to fit all the models in the text while you read
the book because this reinforces what you are learning, as does typing in the commands
yourself. The exercises extend this learning process by having you develop your own set
of commands and models using the GUI system.

There is much more to SEM than could possibly be covered in a book this size. This
book is intended to complement the material in the Stata manuals (over 11,000 pages
of helpful information), which are available as PDF files when you install Stata. One
way to access the [SEM] manual is to type help sem in the Command window of Stata.
This opens a help file. At the top left of the help file, the title ([SEM] sem and gsem)
is highlighted in blue. Clicking on this blue link will open up the PDF file of the [SEM]
manual.

This book contains a fairly detailed index. Although I have explanatory section
headings and these are a good place to start searching for how to do something, the
index is naturally much more detailed. You may need to find how to place equality
constraints on a multiple-group analysis or on a pair of reciprocal paths. These are
covered in very different sections of the book, and the index tells you where to find
them. The index was written to be useful after you have read this book and are using
it as a reference to guide you while fitting your own models on your own data.

Conventions

Typewriter font. I use a typewriter font when something would be meaningful to
Stata as input. This would be the case for something you type in the Command
window or in a do-file. If a command is separated from the main text, as in

. sem (compliance <- educ income gender)

a dot prompt will precede the command. I also use a typewriter font for all Stata
results, variable names, folders, and filenames.

Bold font. I use a bold font for menu items and for buttons you click within a menu.
The bold font helps distinguish the button from the text; for example, you might
be instructed to click the Adjust Canvas Size button.

Slant font. I use a slant font when referring to keys on our keyboard, such as the Enter
key.
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Italic font. I use an italic font when referring to text in a menu that you need to
replace with something else, such as an actual variable name.

Capitalization. Stata is case sensitive. The command sem (compliance <- educ

income gender) will produce a maximum likelihood multiple regression. If you
replace sem with Sem, Stata will report that it has no command called Sem. I
will use lowercase for all commands and all observed variables. When I refer to
latent variables, I will capitalize the first letter of the latent variable. A sim-
ple confirmatory factor analysis would be sem (Alienation -> anomia isolate

depress report). Only the latent variable, Alienation, is capitalized. The ar-
row indicates that observed variables measure how a person responds on an anomia
scale labeled anomia, an isolation scale labeled isolate, a depression scale labeled
depress, and a reported score from an observer labeled report. All four of these
observed variables depend on their level of Alienation, the latent variable.
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1 Introduction to confirmatory factor
analysis

1.1 Introduction

When we are measuring a concept, it is desirable for that concept to be unidimensional.
For example, if we are measuring a person’s perception of his or her health, the concept
is vague in that there are multiple dimensions of health—physical health, mental health,
and so on. Let us suppose Chloe is in excellent physical health (a perfect 10), but she
is very low on mental health (a score of 0.0). Madison is in excellent mental health (a
perfect 10), but has serious problems with her physical health (a score of 0.0). Jaylen is
average on both dimensions (a score of 5.0 on both). Do we want to give all three the
same score because Chloe, Madison, and Jaylen each average 5.0? Should one dimension
be more important than another?

When you have two dimensions (x and y) and try to represent them on a graph,
you need two values: one showing a score on the x dimension and one showing a score
on the y dimension. When there is more than one dimension, a single score becomes
difficult to interpret, and it is often misleading to represent the location of a person on
the concept with a single number. Thus there are advantages to narrowly defining our
concepts so our measures can tap a single dimension. If we are interested in multiple
dimensions, such as distinguishing between physical and mental health, then we need
multiple concepts and multiple empirical sets of measures.

On the other hand, we can carry this argument too far. Each item we might pick
to measure physical health will represent a slightly different aspect of physical health.
We should aim to represent as broad a meaning of physical health as we can without
adding distinctly different dimensions. The ideal way to do this is to allow each item
to have its own unique variance and develop a scale score that represents the shared
meaning of the set of items on a single dimension. This way, our measurement model
represents concepts that are neither too broad to have a clear meaning nor too narrow
to be of general interest.

This is where we will go with confirmatory factor analysis (CFA). We will first cover
the “do not even think about it” approach, followed by the exploratory search for a
single dimension using the traditional principal component factor analysis approach.
We will then extend this to CFA measurement models where we have first one and then
two or more concepts.

1
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2 Chapter 1 Introduction to confirmatory factor analysis

1.2 The “do not even think about it” approach

Many studies have brief sections reporting how they measured the variables. The au-
thors simply assume the dimensionality of what they are measuring; all they report is
the alpha (α) measure of reliability. (Do not confuse this alpha coefficient with the use of
alpha for the conventional level of statistical significance.) If alpha is greater than 0.80
(sometimes a lower value is considered adequate), then these authors say they have a
good measure. The alpha coefficient is a measure of internal consistency. It depends on
just two parameters, namely, the average correlation/covariance of the items with one
another and the number of items. With 20 or more items, the alpha could be 0.80 even
if the items are only weakly correlated with one another and even if the items represent
several dimensions.

A good alpha value does not ensure that a single dimension is being tapped. Consider
the following correlation matrix:

x1 x2 x3 x4 x5 x6

x1 1.0
x2 0.6 1.0
x3 0.6 0.6 1.0
x4 0.3 0.3 0.3 1.0
x5 0.3 0.3 0.3 0.6 1.0
x6 0.3 0.3 0.3 0.6 0.6 1.0

We see in this matrix two subsets of items: x1–x3 and x4–x6. Items x1–x3 are all
highly correlated with each other (r’s = 0.6) but much less correlated with items x4–x6
(r’s = 0.3). Similarly, items x4–x6 are highly correlated with one another (r’s = 0.6)
but much less correlated with items x1–x3 (r’s = 0.3). This indicates that there are two
related dimensions, namely, whatever is being measured by x1–x3 for one dimension
and whatever is being measured by x4–x6 for the other. The alpha for these six items is
α = 0.81, which is considered good. For example, Kline (2000) indicates that an alpha
of 0.70 and above is acceptable. However, the point here is that when we rely on alpha
to justify computing a total or mean score for a set of items, we may be forcing together
two or more dimensions, that is, trying to represent two (or more) concepts with one
number. At the very least, we should routinely combine reports of reliability with some
sort of factor analysis to evaluate how many dimensions we are measuring.

Alpha can be high even with items that are only minimally related to one another.
The formula for a standardized alpha is

α =
kr

1 + (k − 1)r

where k is the number of items in the scale and r is the mean correlation among the
items. We would not think of an r = 0.17, for example, as more than a minimal
relationship. After all, if r = 0.17 then r2 = 0.03, meaning that 97% of the variance
in the two variables is not linearly related. However, if you had a 40-item scale with
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1.3 The principal component factor analysis approach 3

an average correlation of just 0.17, your alpha would be 0.80. The measure would be
reliable in the sense of internal consistency, but the high alpha does not mean we are
measuring a single dimension. Simply adding up a series of items (or taking their mean)
and reporting an alpha is insufficient to qualify a measure as a good measure.

1.3 The principal component factor analysis approach

Principal component factor analysis (PCFA) is the most traditional approach to factor
analysis. Several authors have demonstrated that this is far from the best type of factor
analysis (Fabrigar et al. 1999; Costello and Osborne 2005), and some prefer to go so far
as to say it is not really factor analysis at all. Stata offers alternative exploratory factor
analysis methods, including maximum likelihood factor analysis, that have significant
advantages; we are using Stata’s PCFA only because of its widespread use. The structural
equation modeling approach has advantages over all the traditional approaches to factor
analysis and will be the focus of this book.

A major concern with PCFA is that it tries to account for all the variance and
covariance of the set of items rather than the portion of the covariance that the items
share in common. Thus it assumes there is no unique or error variance in each of
the indicator variables. One reason PCFA is so widely used is because it is the default
method in other widely used statistical packages, and you need to override this default
in those programs to get a truer form of factor analysis. In Stata, PCFA is an option
you need to specify and not the default. The Stata command for PCFA is simply factor

varlist, pcf, where pcf stands for principal component factor analysis. Through the
menu system, click on Statistics > Multivariate analysis > Factor and principal
component analysis > Factor analysis.1 In that dialog box, you list your variables
under the Model tab. Under the Model 2 tab, you pick Principal-component factor.

We will illustrate PCFA using actual data from the National Longitudinal Survey of
Youth, 1997 (NLSY97). This is a longitudinal study that focuses on the transition from
youth to adulthood. In 2006, when the participants were in their 20s, the NLSY97 asked
a series of questions about the government being proactive in promoting well-being.
The questions covered such topics as providing decent housing, college aid, reducing
the income differential, health care, and providing jobs. We are interested in using 10
items to create a measure of conservatism. In the nlsy97cfa.dta dataset, these items
are named s8646900–s8647800; for simplicity, we have renamed them x1 to x10. The
commands appear in a do-file called ch1.do, which you can find at http://www.stata-
press.com/data/dsemusr/ch1.do. The dataset is located at

. use http://www.stata-press.com/data/dsemusr/nlsy97cfa.dta

1. Warning: When you go to Statistics > Multivariate analysis > Factor and principal com-
ponent analysis, do not then pick Principal component analysis (PCA) from the menu.
This is intended to extract principal components, linear combinations of the variables, rather than
factors.
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4 Chapter 1 Introduction to confirmatory factor analysis

Before constructing a scale, we need to examine the items. As you can see below, the
responses range from 1 (meaning the task definitely should be the role of government)
to 4 (meaning the task definitely should not be the role of government). Higher scores
indicate that the person is more conservative.

. codebook x1-x10, compact

Variable Obs Unique Mean Min Max Label

x1 1833 4 2.331697 1 4 GOVT RESPONSIBILITY - PROVIDE JOB...
x2 1859 4 1.620226 1 4 GOVT RESPNSBLTY - KEEP PRICES UND...
x3 1874 4 1.416222 1 4 GOVT RESPNSBLTY - HLTH CARE FOR S...
x4 1872 4 1.365385 1 4 GOVT RESPNSBLTY -PROV ELD LIV STA...
x5 1815 4 1.773003 1 4 GOVT RESPNSBLTY -PROV IND HELP 2006
x6 1811 4 2.276643 1 4 GOVT RESPNSBLTY -PROV UNEMP LIV S...
x7 1775 4 2.228732 1 4 GOVT RESPNSBLTY -REDUCE INC DIFF ...
x8 1875 4 1.309333 1 4 GOVT RESPNSBLTY -PROV COLL FIN AI...
x9 1847 4 1.705468 1 4 GOVT RESPNSBLTY -PROV DECENT HOUS...
x10 1860 4 1.39086 1 4 GOVT RESPNSBLTY -PROTECT ENVIRONM...

A PCFA can be run on these items by using a very simple command:

. factor x1-x10, pcf
(obs=1617)

Factor analysis/correlation Number of obs = 1617
Method: principal-component factors Retained factors = 2
Rotation: (unrotated) Number of params = 19

Factor Eigenvalue Difference Proportion Cumulative

Factor1 3.91523 2.90094 0.3915 0.3915
Factor2 1.01429 0.13285 0.1014 0.4930
Factor3 0.88144 0.11496 0.0881 0.5811
Factor4 0.76648 0.02404 0.0766 0.6577
Factor5 0.74243 0.04889 0.0742 0.7320
Factor6 0.69354 0.08649 0.0694 0.8013
Factor7 0.60705 0.06820 0.0607 0.8620
Factor8 0.53886 0.09140 0.0539 0.9159
Factor9 0.44746 0.05424 0.0447 0.9607
Factor10 0.39322 . 0.0393 1.0000

LR test: independent vs. saturated: chi2(45) = 4083.46 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

x1 0.6064 -0.3789 0.4888
x2 0.5810 0.0438 0.6605
x3 0.7221 0.2140 0.4328
x4 0.7174 0.3200 0.3830
x5 0.5780 -0.0261 0.6653
x6 0.6091 -0.4536 0.4233
x7 0.6050 -0.3327 0.5233
x8 0.5994 0.3252 0.5350
x9 0.7330 -0.1621 0.4365

x10 0.4543 0.5211 0.5221
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1.3 The principal component factor analysis approach 5

These results indicate that the first factor is very strong with an eigenvalue of 3.92.
The eigenvalue is how much of the total variance over all the items is explained by the
first factor. By using the display command, we can compute the first eigenvalue as
the sum of the squared factor loadings for the first factor:

. display .6064^2+.5810^2+.7221^2+.7174^2+.5780^2+.6091^2+.6050^2 +.5994^2+
> .7330^2+.4543^2
3.9154428

The PCFA analyzes the correlation matrix where each item is standardized to have
a variance of 1.0. Therefore, with 10 items, the eigenvalues combined will add up to 10.
With 3.92 out of 10 being explained by the first factor, we say the first factor explains
39.2% of the variance in the set of items. Any factor with an eigenvalue of less than 1.0
can usually be ignored.

The second factor has an eigenvalue of 1.01, which is very weak though it does not
strictly fall below the 1.0 cutoff. We decide that the first factor, explaining 39.2% of the
variance in the 10 items, is the only strong factor. This is reasonably consistent with
our intention to pick items that tap a single dimension. We do not have an explicit test
of a single-factor solution, but the eigenvalue of 3.92 is large enough to be reasonably
confident that all the items are tapping a single dimension. Notice that all the loadings
of the items of Factor1 are substantial, varying from 0.45 to 0.73. This range is also
good when compared to conventions of the loadings being 0.4 or above. Some authors
feel a loading of at least 0.30 is the minimum criterion for an item (Costello and Osborne
2005). You may recall that with the PCFA, the loadings are the correlation between how
people respond to each item and the underlying, latent dimension.

Even though the last item has a loading over 0.40, its loading is considerably weaker
than the rest of the items. The last item is about the environment, which can be
a personal concern of anyone, whether conservative or not. By contrast, the other
nine items involve government response to needs people have because of their limited
personal resources. Because there is a second factor with an eigenvalue greater than 1.0
and because the loading of the tenth item on the first factor is the weakest, we will drop
that item and rerun our analysis to see if we can obtain a clearer result.
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6 Chapter 1 Introduction to confirmatory factor analysis

. factor x1-x9, pcf
(obs=1625)

Factor analysis/correlation Number of obs = 1625
Method: principal-component factors Retained factors = 1
Rotation: (unrotated) Number of params = 9

Factor Eigenvalue Difference Proportion Cumulative

Factor1 3.76124 2.80650 0.4179 0.4179
Factor2 0.95473 0.10627 0.1061 0.5240
Factor3 0.84847 0.10176 0.0943 0.6183
Factor4 0.74671 0.05561 0.0830 0.7012
Factor5 0.69110 0.07429 0.0768 0.7780
Factor6 0.61681 0.07780 0.0685 0.8466
Factor7 0.53900 0.09177 0.0599 0.9065
Factor8 0.44723 0.05252 0.0497 0.9561
Factor9 0.39471 . 0.0439 1.0000

LR test: independent vs. saturated: chi2(36) = 3863.18 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

x1 0.6243 0.6103
x2 0.5883 0.6539
x3 0.7222 0.4785
x4 0.7131 0.4915
x5 0.5818 0.6615
x6 0.6197 0.6160
x7 0.6085 0.6297
x8 0.5968 0.6439
x9 0.7392 0.4535

Most researchers would be quite happy with these results. Only one factor has an
eigenvalue greater than 1.0, and all nine items load over 0.5 on that factor.

Many researchers ignore the results shown in the column labeled Uniqueness. These
values represent the unique variance or error variance. For example, 61% of the variance
in indicator variable x1 is not accounted for by the factor solution. The principal
component factor method assumes that these uniquenesses are 0. The uniquenesses
are sufficiently large that we should consider using a different method for performing
exploratory factor analysis, such as the default principle factor method, which does
not assume that the uniquenesses are 0. Had we instead typed factor x1-x9, pf,
the results would have been similar, having only one factor with an eigenvalue greater
than 1 and with factor loadings ranging from 0.51 to 0.69 on that factor.

Let us proceed with just the first nine items.

Copyright 2013 StataCorp LP.  All rights reserved.  May not be copied, scanned, or duplicated, in whole or in part. 



1.4 Alpha reliability for our nine-item scale 7

1.4 Alpha reliability for our nine-item scale

The next step is to assess the reliability of our nine-item scale of conservatism. We will
use the alpha command with three options: the item option gives us item analysis,
the label option includes labels of our variables (which can make output look messy if
you have long labels), and the asis option (which stands for “as is”) does not let Stata
reverse-code items to get them to fit better. If you have an item that is coded in the
opposite direction, you should reverse-code it yourself before running the analysis.

Here is the alpha command with results. Stata can estimate alpha using the variance
and covariances (unstandardized, the default) or the correlations (standardized). Be-
cause we are going to generate mean or total scores, we will estimate the unstandardized
value. The unstandardized version is recommended when generating a scale score using
unstandardized variables.

. alpha x1-x9, item label asis

Test scale = mean(unstandardized items)

Items S it-cor ir-cor ii-cov alpha label

x1 + 0.664 0.505 .19857 0.789 GOVT RESPONSIBILITY -
PROVIDE JOBS 2006

x2 + 0.589 0.454 .21848 0.793 GOVT RESPNSBLTY - KEEP
PRICES UND CTRL 2006

x3 + 0.669 0.573 .21577 0.781 GOVT RESPNSBLTY - HLTH CARE
FOR SICK 2006

x4 + 0.658 0.568 .21954 0.783 GOVT RESPNSBLTY -PROV ELD
LIV STAND 2006

x5 + 0.582 0.441 .21865 0.795 GOVT RESPNSBLTY -PROV IND
HELP 2006

x6 + 0.650 0.503 .20456 0.788 GOVT RESPNSBLTY -PROV UNEMP
LIV STAND 2006

x7 + 0.656 0.487 .19844 0.793 GOVT RESPNSBLTY -REDUCE INC
DIFF 2006

x8 + 0.540 0.441 .2348 0.797 GOVT RESPNSBLTY -PROV COLL
FIN AID 2006

x9 + 0.717 0.622 .20509 0.774 GOVT RESPNSBLTY -PROV DECENT
HOUSING 2006

Test scale .21262 0.807 mean(unstandardized items)

Our scale looks great by conventional standards. At the bottom of the table in the
row labeled Test scale, we have the alpha for our scale. The alpha is 0.81, which is
over the 0.70 minimum value standard. Under the column labeled alpha, we see what
would happen if we dropped any single item from our scale; in each case, the alpha
would go down. If dropping an item (one at a time) would substantially raise the alpha,
we might look carefully at the item to make sure it was measuring the same concept as
the other items. Most likely, the PCFA would have spotted such a problematic item as
not fitting the first factor.
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8 Chapter 1 Introduction to confirmatory factor analysis

To obtain our scale score for each person in our sample, we would simply compute
the total or mean score for the nine items. I usually prefer the mean score of the items,
because it will be on the same scale as the original items (for these items, between 1
to 4). Given this, a mean of 3.0 would denote that a person is conservative and does
not support a proactive government. A mean of 1.5 would denote that the person is
fairly liberal, between definitely and probably supporting a proactive government.

By contrast, a total score would range from 9 to 36, and it would be much harder
to interpret a total score of, say, 24.0 (instead of 3.0) or 12.0 (instead of 1.5). Another
problem with the total score arises if there are missing values for some items. An item
with a missing value would contribute nothing to the total, as if we had assigned that
item a value of 0.0. If a person skips an item, giving them a score of 0 for that item is
ridiculous because that would indicate more definite support of a proactive government
than the most favorable available response that is coded as 1.0.

To obtain the mean score for each person, we generate our scale score as the mean
of the items the person answered. This egen (extended generation) command gives you
the mean of however many of the nine items the person answered:

. egen conserve = rowmean(x1-x9)
(7097 missing values generated)

The egen command shows that there are 7,097 missing values on our generated conserve

variable. This is not a problem because the item was only asked for a subset of the overall
dataset. The summarize command below tells us that the mean is 1.78, the standard
deviation is 0.51, and this is based on 1,888 observations. These 1,888 observations
include anybody who answered at least one of the items (see box 2.1 for alternative
treatments of missing values). The histogram with a normal distribution overlay (fig-
ure 1.1) shows that our score is pretty skewed to the right with a concentration of people
favoring a proactive government.

. summarize conserve, detail

conserve

Percentiles Smallest
1% 1 1
5% 1 1

10% 1.111111 1 Obs 1888
25% 1.354167 1 Sum of Wgt. 1888

50% 1.690476 Mean 1.775299
Largest Std. Dev. .5132186

75% 2.111111 3.888889
90% 2.444444 3.888889 Variance .2633934
95% 2.666667 4 Skewness .7200074
99% 3.222222 4 Kurtosis 3.537959
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. histogram conserve, norm freq
(bin=32, start=1, width=.09375)
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Figure 1.1. Histogram of generated mean score on conservatism

1.5 Generating a factor score rather than a mean or sum-

mative score

When we generated our conserve scale using the traditional approach, we simply got
the mean of the nine items. This method counts each item as equally relevant to the
concept being measured. If all the items are equally important, we say that the items
are τ (“tau”) equivalent. If this were true, then each item would have an identical
loading; rarely is this the case. An item that has a loading of 0.90 on a factor is more
salient than one that has a loading of 0.30. Therefore, the item with the larger loading
should be given a greater weight when we generate the scale score.

You can generate a factor score that weights each item according to how salient it is
to the concept being measured. Factor scores will be extremely highly correlated with
the simple mean or summative score whenever the loadings are all fairly similar. If the
loadings vary widely, the factor score will be a better score to use because factor scores
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10 Chapter 1 Introduction to confirmatory factor analysis

weight items by their salience (loadings and correlations with the other items), but the
advantage is only substantial when some items have much weaker loadings than others.
The factor score will be scaled to have a mean of 0.0 and a variance of 1.0; in other
words, it will be the standardized score for the concept.

To generate a factor score on the first factor, we run the postestimation command
predict immediately after the factor command. The predict command we use
includes only those participants who answered all nine items. This means we may have
a substantially smaller N if several participants have skipped at least one of the items.
This casewise deletion can be a serious limitation because we normally want to use all
available data.

. factor x1-x9, pcf

(output omitted )

. predict conservf1
(regression scoring assumed)

Scoring coefficients (method = regression)

Variable Factor1

x1 0.16598
x2 0.15641
x3 0.19200
x4 0.18958
x5 0.15468
x6 0.16475
x7 0.16179
x8 0.15866
x9 0.19654

We do not need any options on the predict command because the default is
to generate the factor score for the first factor. By contrast, the egen conserve =

rowmean(x1-x9) we used in the previous section computed the mean of however many
items a person answered so long as they answered at least one item. We have 1,625
people who answered all nine items and 1,888 people who answered at least one of the
nine items; therefore, the egen command retains more observations.2

The results above show us the factor scoring coefficients, which are like standardized
beta weights. Notice that the ninth item has a scoring coefficient of 0.20 and the second
item has a scoring coefficient of 0.16. This means the ninth item counts slightly more in
generation of the factor score, which makes sense because the ninth item had a bigger
loading than the second item (0.74 > 0.59).

The default for the predict command is to predict the factor score as the weighted
sum of the items using the scoring coefficient as the weight for each item. The fac-
tor score should be more reliable than the summative or mean score because it more
optimally weights the items.

2. To get the mean for only those who answered all nine items, we would have used egen conservm =

rowmean(x1-x9) if !missing(x1, x2, x3, x4, x5, x6, x7, x8, x9). Stata reads !missing as
“not missing”. Notice the items are all listed and separated by a comma; the commas are necessary
for this command.

Copyright 2013 StataCorp LP.  All rights reserved.  May not be copied, scanned, or duplicated, in whole or in part. 



1.6 What can CFA add? 11

How much does it matter whether you compute a mean/summative score or a factor
score? The correlation between the average score on conservatism and the factor score is
r = 0.99. Thus it does not matter which approach you use in this example, except for the
different ways of handling missing values on skipped items. Here is a graph comparing
the distributions of the two variables. The factor score would be more reliable when the
items varied substantially in their loadings and, hence, their factor scoring coefficients.
The mean or summative score would use more information if there were a lot of missing
values.
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Figure 1.2. Generated mean score on conservatism versus factor score on conservatism

1.6 What can CFA add?

One thing that both CFA and factor analysis methods other than PCFA do is to allow
each item to have its own unique variance. This is illustrated in figure 1.3, where each
observed question (x1–x9) has a corresponding error term, ǫ1–ǫ9. These error terms
allow for variance in the responses to the question that are unique to the item and do
not reflecting the shared variance of the nine items. The latent variable, Conservative,
appears in the oval and is what the nine items share; the ǫ’s are what is unique about
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12 Chapter 1 Introduction to confirmatory factor analysis

each item. It is usual to assume that the error terms are normally distributed and
uncorrelated (this assumption will be relaxed in later sections of the book).

CFA assumes that the latent variable accounts for how people respond to all nine
individual questions, which is what the nine items share in common. Notice the direction
of the arrows from Conservative to each of the nine items; the arrows take us from the
latent variable to the observed items. This is because how people respond to a question
is the dependent variable; that is, a person’s response depends on how conservative he
or she is, the independent variable. Because all the items seem to tap conservatism, we
will posit that a single factor is all we need, and so we draw the single-factor model seen
in figure 1.3.

Conservative

x1

ε1

x2

ε2

x3

ε3

x4

ε4

x5

ε5

x6

ε6

x7

ε7

x8

ε8

x9

ε9

Figure 1.3. CFA for nine-item conservatism scale

This is a confirmatory model because we have specified the factor that underlies
the responses to these nine items; that is, all the items are indicators of conservatism.
When we ran PCFA, we hoped there would be a single dominant factor. With CFA, we
specify the number of factors. In this example, we specified that the covariance of the
nine items is fully explained by the single latent variable plus the unique variance of
each item. Notice that we are estimating the unique variance or error variance for each
of the nine observed indicator variables (items). In the PCFA, we assumed conservatism
had to explain all the variance among the nine items. Here we acknowledge that each
item may have some unique variance that we are treating as random error. We assume
the error variables are normally distributed with a mean of 0.

There are real advantages to CFA. By isolating the shared variance of the nine ques-
tions from their unique variances, we are able to obtain a better measure of the latent
variable. We are also likely to get stronger results by removing measurement error if
the latent variable is subsequently used as an independent or dependent variable in a
structural equation model. This is because measurement error, by its nature, only adds
noise to our measurement; it has no explanatory power.
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1.6 What can CFA add? 13

Box 1.1. Using the SEM Builder to draw a model

Appendix A provides an introduction to using the extremely capable drawing
package that Stata offers, the SEM Builder. Here I will just show how we created
figure 1.3. In the Command window, type in sembuilder to open the drawing
program.

Select the Add Measurement Component tool, , and then click within the
SEM Builder wherever you want the latent variable to appear (for our purposes,
you will want it to appear in the middle horizontally and a bit high vertically).

In the box labeled Latent variable name, type Conservative (remember
that our convention is to capitalize the first letter of a latent variable). In the
box labeled Measurement variables, choose the variables x1 through x9 from the
drop-down menu (assuming you have the nlsy97cfa.dta dataset open). Make
sure the Measurement direction is Down. Click OK.

With nine indicator variables, the default size for observed variable boxes
will cause the diagram to be wider than the default size of the canvas. To see the

full diagram, click on the Adjust Canvas Size button, , and set the canvas
size to 7× 4.

This new canvas size will be large enough to accommodate the full diagram. How-
ever, you may not yet be able to see the full canvas. Click on the Fit in Window

button, , to see the full canvas in the Builder window. If a portion of the

diagram is not on the canvas, click on the Select tool, , and drag it over the
model so that all objects are highlighted. Then move the diagram until you see
the entire diagram on the canvas.
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14 Chapter 1 Introduction to confirmatory factor analysis

Box 1.1. (continued)

Because Conservative is so long, it does not fit in the default size oval for a
latent variable. To make the oval larger, select Settings > Variables > All

Latent... from the menu (on a Mac, click the Tools button, , in the upper
right to find the Settings menu.) In the dialog box that opens, change the size
to 0.75 × 0.38. You can also change the size of the boxes for observed variables
through the Settings > Variables menu if you like.

Should you need to copy this diagram to another document, such as a Word
document, you can do this with the standard copy and paste commands. You can
use the Adjust Canvas Size button if you want to specify the exact width and
height of the object that is copied. Then click on the Copy Diagram button,

. Now the diagram is ready to paste into another document. More detail
appears in the chapter 1 appendix.

With so many indicators, it should be clear now why you want short names for
your variables. I used the clonevar command to rename the variables because
their original names in the dataset were long and unclear, for example, clonevar
x1 = s8332500.

1.7 Fitting a CFA model

We can fit a CFA model by using the Stata command language directly or by using the
SEM Builder. Here I will show how to do this with the commands, to ensure that you
understand them. The chapter 1 appendix then replicates selected results with the SEM

Builder.

The Stata command to fit our CFA model is simple. We do need to run a set of four
commands, but each of them is quite simple. First, to fit the model, we run

. sem (Conservative -> x1-x9)

By running this command, we have the name of our latent variable, Conservative, and
the -> points from the latent variable to its indicators, x1-x9, just like in figure 1.3.3

The direction of the arrow is sometimes difficult for beginners to grasp. The idea is
that a person’s response to each item is caused by how conservative he or she is. That
is, your response to an item does not cause you to be conservative; rather, your level of
conservatism causes your response. The latent variable here is the independent variable,
and the indicators are the dependent variables. We have not specified any options. We
have four possible estimation methods:

3. Note that the name of the latent variable should be capitalized to help us distinguish indicators,
which should be all lowercase, from latent variables.
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1.7 Fitting a CFA model 15

1. The default is method(ml) which means that we fit the model using maximum like-
lihood estimation. By default, when using method(ml), the variance–covariance
matrix of the estimators (and therefore the standard errors) is computed using an
observed information matrix. Where you assume normality, method(ml) is often
the best option and is fairly robust even with some violation of normality. This
uses listwise deletion.

2. When option method(ml) is combined with option vce(robust), sem performs
quasi maximum likelihood estimation, and the standard errors are estimated in
a manner that does not assume normality. This uses the Huber–White sandwich
estimator of the variance–covariance matrix of the estimators. Because several
of our items are clearly not normally distributed, this might be a good option to
use. The robust standard errors are less efficient than the observed information
matrix standard errors if the assumptions of maximum likelihood estimation are
met. This uses listwise deletion.

3. The option method(adf) is asymptotically distribution free. This method makes
no normality assumptions and is a form of weighted least squares. It is also less ef-
ficient than maximum likelihood where that is appropriate, but more efficient than
the quasi maximum likelihood estimation. Because it does not assume normality
and is asymptotically equivalent (in a large sample) to maximum likelihood, this
may be the best option for our data. This uses listwise deletion.

4. The option method(mlmv) is appropriate when you want to use all the information
available in the presence of missing values on one or more variables. This method
assumes joint normality and that the missing values are missing at random. This
does not use listwise deletion. In our example, we would have an N = 1888 using
the method(mlmv) option, whereas with any of the other three estimators our
N = 1665.

You can also use the vce(bootstrap) option to estimate the standard errors with
the bootstrap procedure. This method will resample your observations with replacement
and fit the model however many times you specify. It will then use the distribution of the
parameter estimates across these replications to estimate your standard error. This will
be especially useful when you are concerned about violating the normality assumption of
the maximum likelihood options. For example, you might run the following command:

. sem (Conservative -> x1-x9), vce(bootstrap, reps(1000) seed(111))

We are using the vce(bootstrap) option and specifying reps(1000), which means that
we are drawing 1,000 samples for our replications. The seed(111) option is used so
that we can replicate our results; you will get different results each time you run the
command unless you set a seed.
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16 Chapter 1 Introduction to confirmatory factor analysis

For now, we will just use the default version of the command. Here are the results:

. sem (Conservative -> x1-x9)
(7360 observations with missing values excluded)

Endogenous variables

Measurement: x1 x2 x3 x4 x5 x6 x7 x8 x9

Exogenous variables

Latent: Conservative

Fitting target model:

Iteration 0: log likelihood = -15604.985
Iteration 1: log likelihood = -15594.134
Iteration 2: log likelihood = -15593.73
Iteration 3: log likelihood = -15593.729

Structural equation model Number of obs = 1625
Estimation method = ml
Log likelihood = -15593.729

( 1) [x1]Conservative = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Measurement
x1 <-
Conservat~e 1 (constrained)

_cons 2.329846 .0253521 91.90 0.000 2.280157 2.379535

x2 <-
Conservat~e .7377011 .0451423 16.34 0.000 .6492237 .8261784

_cons 1.617231 .0198829 81.34 0.000 1.578261 1.656201

x3 <-
Conservat~e .8267157 .0432635 19.11 0.000 .7419209 .9115105

_cons 1.414154 .0167434 84.46 0.000 1.381337 1.44697

x4 <-
Conservat~e .7555335 .0403806 18.71 0.000 .676389 .834678

_cons 1.362462 .0155865 87.41 0.000 1.331913 1.39301

x5 <-
Conservat~e .7380149 .0462134 15.97 0.000 .6474383 .8285914

_cons 1.769846 .0202603 87.36 0.000 1.730137 1.809556

x6 <-
Conservat~e .9146378 .053406 17.13 0.000 .8099639 1.019312

_cons 2.259692 .0229301 98.55 0.000 2.21475 2.304634

x7 <-
Conservat~e 1.028027 .0614681 16.72 0.000 .9075522 1.148503

_cons 2.219692 .0266439 83.31 0.000 2.167471 2.271913

x8 <-
Conservat~e .5486913 .033463 16.40 0.000 .483105 .6142775

_cons 1.307077 .0141374 92.46 0.000 1.279368 1.334786
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x9 <-
Conservat~e .9278118 .0479147 19.36 0.000 .8339008 1.021723

_cons 1.705231 .0187041 91.17 0.000 1.668571 1.74189

var(e.x1) .7287257 .0280851 .6757076 .7859038
var(e.x2) .4706031 .0178489 .4368885 .5069195
var(e.x3) .2397812 .0104761 .2201029 .2612188
var(e.x4) .2145611 .009255 .1971672 .2334895
var(e.x5) .4950753 .0186802 .4597838 .5330757
var(e.x6) .590299 .0229507 .5469876 .6370399
var(e.x7) .8199315 .0314634 .7605262 .8839769
var(e.x8) .2297334 .0087974 .213122 .2476396
var(e.x9) .2967257 .0129788 .2723476 .3232858

var(Conserv~e) .3157048 .0287081 .264167 .3772973

LR test of model vs. saturated: chi2(27) = 419.01, Prob > chi2 = 0.0000

1.8 Interpreting and presenting CFA results

At the top of the results, we see that we have 7,360 observations with missing values
excluded. The default estimation method, maximum likelihood, uses listwise deletion
and drops any observations that do not have a response for all nine of our items.4 The
results next report our endogenous (dependent) variables. All of our observed items,
x1 to x9, are endogenous; that is, these measurement variables depend on the latent
variable. We next have a list of exogenous variables. Stata reports just one latent
exogenous variable, Conservative; Stata does not list the measurement-error terms ǫ1
to ǫ9 here even though these are also latent exogenous variables.

The maximum likelihood estimator maximizes the log-likelihood function. Stata
converges quite quickly, taking just three iterations. We do not use the log-likelihood
function directly. Notice that with listwise deletion, we only have 1,625 observations
that have no missing values.

The results above include a section labeled Measurement and a section reporting
variances. The measurement section gives estimates of the unstandardized measurement
coefficients (factor loadings), their standard errors, and a z test for each estimate along
with a 95% confidence interval. By contrast, our PCFA estimates only included factor
loadings. The variance section shows the estimates of the variances of the error terms,
ǫ1 to ǫ9. In the column labeled Coef. appears the unstandardized solution. To identify
the variance of the latent variable, Conservative, Stata fixes the loading of the first
indicator at 1.0. The indicator that has its loading fixed at 1.0 is called the reference
indicator. All the unstandardized estimates will change if you change the reference
indicator. It is a good idea to have one of the stronger indicators be the reference
indicator. If you want the second indicator to be the reference indicator, you would
simply list the variables with that indicator appearing first: sem (Conservative ->

x2 x1 x3-x9).

4. If we had wanted a full information approach that utilized all available information, we would have
specified sem (Conservative -> x1-x9), method(mlmv).
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